a2 United States Patent

Crossley

US009274932B2

US 9,274,932 B2
Mar. 1, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@

(22)

(65)

(60)

(1)

(52)

(58)

GRAPHICAL-USER-INTERFACE-BASED
METHOD AND SYSTEM FOR DESIGNING
AND CONFIGURING WEB-SITE TESTING
AND ANALYSIS

Inventor: Peter Crossley, Sammamish, WA (US)

Assignee: WEBTRENDS, INC., Portland, OR
(US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 730 days.

Appl. No.: 13/471,349

Filed: May 14, 2012
Prior Publication Data
US 2012/0290920 A1 Nov. 15, 2012

Related U.S. Application Data

Provisional application No. 61/485,571, filed on May
12, 2011.

Int. CI.

GOGF 17/00 (2006.01)

GOG6F 11/36 (2006.01)

GOGF 9/44 (2006.01)

U.S. CL

CPC ..o GOG6F 11/3664 (2013.01); GO6F 8/38
(2013.01)

Field of Classification Search

CPC ..o GOG6F 3/14; GO6F 11/30; GOG6F 8/38

USPC o 715/234, 239, 243

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

8,788,885 B1* 7/2014 Cooketal. ................... 714/38.1
8,839,093 B1* 9/2014 Siroker ............ GO6F 17/3089
715/234
2004/0123239 Al* 6/2004 Roessler ................ 715/513
2006/0190561 Al 8/2006 Conboy et al.

2008/0275980 Al* 11/2008 Hansen ............. G06Q 30/02
709/224

2008/0307299 Al  12/2008 Marchant et al.
2009/0100345 Al* 42009 Miller ......ccoovvviivinnn. 715/738
2009/0132524 Al* 5/2009 Stouffer ... .. GO6F 17/30864
2011/0066957 Al* 3/2011 Pratsetal. ... 715/753
2011/0197124 Al* 82011 Garaventa .................... 715/234
2012/0047430 Al* 2/2012 Williams ............. G06Q 30/02
715/239
2012/0204091 Al* 82012 Sullivan ... GO6F 11/3664
715/234

OTHER PUBLICATIONS

Choudhary, S.R., et al., “A Cross-browser Web Application Testing
Tool”, IEEE International Conference on Software Maintenance.
Sep. 2010. (abstract only).

* cited by examiner

Primary Examiner — Stephen Hong

Assistant Examiner — Matthew Ludwig

(74) Attorney, Agent, or Firm — Olympic Patent Works
PLLC

(57) ABSTRACT

The current application is directed to methods and systems
for designing and configuring web-site testing and analysis.
In certain implementations, a testing service collects cus-
tomer page-access and conversion information on behalf of a
web site. The testing service is straightforwardly accessed
and configured, through a web-site-based graphical user
interface, and is virtually incorporated into the web site.

14 Claims, 52 Drawing Sheets

Responsive
Marketing

SOLUTIONS  PRODULTS » SERVICES  EXPERTISE  SUPPORT  ABOUT U

Unified
Analytics
a

508

* The Telegraph



U.S. Patent Mar. 1, 2016 Sheet 1 of 52

FIG. 1




U.S. Patent Mar. 1, 2016 Sheet 2 of 52 US 9,274,932 B2

204

202

FIG. 2




US 9,274,932 B2

Sheet 3 of 52

Mar. 1, 2016

U.S. Patent

¢ 9ol

/obng urhaen ayqnop 98T e80Ty /{

e TWRY />
@Om.. — <Kpoqg/>
@rm <ATP/>

<ATDR/>

<ATR/>

<ATR/>
<e/>
</ uuo3ing emol,=3Te ,64( ujq uoTzPwITIuOD TS owep/sebeut,=ois Lut»
< m3Y " XSpuT =3Iy e>
< UOIINL=PT ATP>

<ATR/>
< / WNOX AURYL,=3T¢ .5d('xe3zo uoyivwrrIUed e3TF cwep/sebewt,=DIs LHuTi —
<uTOFFO.=PYT ATP>

< IYBTI,wPT ATP>

ATR >

<ATD/>
</ wu=3TE LBl -5y uoTivImIZUGD ©3TS owep/sobeut,=0Is But> _
<uOIOY,=PT ATP>

<uRFOTu=PT ATP>

<ATP/>

<ATER/>
</ WUOTIRMITIUOD,=3TE BAL py uoTiewxTIucd o31s omwsp/sobemr,=0Is LWTH» _ e
< IBUTTPROY,=PT ATP>

<uISPERU,=PT ATP>

< IVUTEIUOD, =T ATP>

<wdX® UTEW,=PT ATP>

<3draos/>! (ydnjes ‘WM <.3drzosearl/ixe3,=edfy 3draos>

<- - epon Butxoel) UOTSISAUOD STIWSPTM 3ISEUT - -i>

L <fpog>

Ole —— <pesu/>

<gdraos><. s Tdeo wu/s( jmod -eTTHepTa  ars/ /1 dany, =108 ,3drrroseael /qxeq,~ediy jdrios>
<- - Arexqri JUSTTD WIOFIETd UCTILZTWTIAO STTWOPTM 3IOFUT--i>

<oTi3Is/>

{ ixdp xdgg:utbaem luolangy

txdp xdp xdpy wxdog:utbrem} qubtig <« « {  fxdg xdp xdpz xdogiutbaem (XdsGpiylpIs [JUuBTIiGworF piubyas
/xbng uthHrew oTqnop 99T 3o98s8Ty/{ xdgp xdp xdgg:urhaew} aFeT# < x» { xdpz xdg xdg xdgg:rurbiem xdg9g:iUlPTA {3FBTiIROTI  }IFOTH

{ ¢xdpg o xdpz xdpz:burpped }zepesyy

fxdzee i uapTa (xdgogiqubTey/wrejueny/ogne xdgg utbrem !p p jeedsi-ou (B[ Hg s3ts omwep/eebewT) TIAN FJIT§ PUNOIBYORG }IDUTRIUCOH

{ iouou:xepxoq }Hwr ( ‘aojued:iubtTR-3%en JCqCArdf punoxbyoeq g :Burtpped {9 :utbiem } Apog
<. 580 /q%en, =ediy eTiys>

<@T3ITH/>WIoIFeTd UCTIRZTWTIA) BTTWOPTM | UOTIBWITFUOD 93TS GOM OUSI<STITI>

</ n8-dLA=1eSITYS ! TWIY/IRS],=3usjucs edif-jusiuc),=aTnbe-dily ejem:

F0€ e, PERy> ————————
<u TR/ 666 T /B30 gr-mun/ /1 A3, =6UTIX TEQUF

<y PAP’ TRUOTITSURTS - TTHRUX /GIC/ TTUIUX /93 /530  ga- uman/ /1 d334. WHE/ /TRUOTATEURIT (' 1 "TRLHX AZA//DEM/ /- DITANd TOIY FIALDOTI>

80€

— V]

8le

. 0c€

e0E ¢l



U.S. Patent Mar. 1, 2016 Sheet 4 of 52 US 9,274,932 B2
404
402
L
406 408
~ -~
HEAD BODY
/ AN / N 40
TITLE STYLE SCRIPT MAIN /]
CONTAINER
HEADER LEFT RIGHT
HEADLINE HERO OFFER BUTTON
N
410 411 412 413
N N N N\
416 417 418 419

FIG. 4



US 9,274,932 B2

Sheet 5 of 52

Mar. 1, 2016

U.S. Patent

G Ol

-

—

afied Buipug)

S
Ve
7

£Lg
uondiosap ~
1onpoud
v0G
>
A uonduasap
sjrejap Jonpoud jonpoud

¢0S

uonduasep
1onpord

— 1 1BpI0
¢S soelg

//

uondirosap
yonpoad

0\

abed 1opio




US 9,274,932 B2

Sheet 6 of 52

Mar. 1, 2016

U.S. Patent

9 Ol

009 —

i SIIAYES
I 1v9d1 8.dO8

> CC9

| MON

f
1] MON A1LSINOH
AW g

o3 |
' ganis
I e
I ogi_}

wmosmmm4<OmJ“ SADINYES | } SIDIAYIAS “
gl9” | _S808 1SINOH_| 909" |_lvoarssos | 019 | _1vo315808 _|
19 \ L $79
209
| 's30InM3s |
o | _1v9318.808 _|
119




U.S. Patent Mar. 1, 2016 Sheet 7 of 52 US 9,274,932 B2

j 702

factor 1 factor 2 factor 3 factor 4

level 1 r7oe
| LEGAL § | == e e o o e o o e
| STUFF | " 'BOB'SLEGAL |
I FOR { SERVICES i
I YOU, | | e e
I_REALLY

BILL ME NOW

level 2 g pomm e = |
| HONEST BOB'S

i LEGAL SERVICES |

BILL ME
HONESTLY NOW

f——--

S
I HEY, F 1
| POINT : i CHECKS-IN-THE-MAIL

| ME AND t LEGAL SERVICES |

[MLBITE, (7777 T T T T
I

level 3

TAKE MY
DOUGH

R |

level 4 T e leteooaolenies WL \ BILL ME NOW
| &=

| | PREDQ""ROER FOR S t | | AND FOREVER
| GREAT | L___mmE 1o w :
| WHITE | ) N d

level & -—-- 7 AN
— : / \ BILL ME
| cemses. i i 1 SHAMELESSLY
HON. |
| apvERSARINL i \
| umeaTon \ ’
! 4
l ~ -

———-1 ~— e -

level 6 -

FIG. 7



U.S. Patent Mar. 1, 2016 Sheet 8 of 52 US 9,274,932 B2

o
e
& cO
g - .
g g z O
£ g LL
=)
@ o
s §
2 ?
0
N
/&/ } & \\ |
ey
o5 \'\\ o
LA ¥ \\\\“1‘\‘@ '
M : “\\““ |
N 21
| “‘ W Z
| \t\i\\\\\\\\\w‘
= I —
S —
o~
&
E
g
2]
[{e]
]
m A
T
{
E
3
[43]
——————— ©
[aw]
[«'a]

AV o

Segment 2

Segment 1

P
2
(o]



U.S. Patent Mar. 1, 2016 Sheet 9 of 52 US 9,274,932 B2

Test
902 — | name
client
description
fime created
web page being fested -
factors N \
K_H

904
\ Test Run

levels for each factor
tested state
segment description
orthogonal array L
conversion event -

906 N

Experiment 1 |

factor 1 — level n
factor 2 — level m
factor 3 — level o L

FIG. 9



US 9,274,932 B2

Sheet 10 of 52

Mar. 1, 2016

U.S. Patent

¢lol

veol

0l 9l

8vs .18¢ 1969 !
e L6ve 80.L4L g
c08’ 99ty 961G G
roe Z501 286¢ y
LLL LZEY 2209 e
0Ly FXARS LeoL z
8oy’ 0912 vLop L \
3§ W \.
co_mmhu%”cg wcoww%“cou SMBINJO # ﬁu:mE_hmaxw
\ R
0201 810} 600, 800
¢col ﬂ ﬂ
S _ _
— sjnsad SWIL pue | aulji Mes
0104
sieq uny 1sa] 189
/ \ |
9001
700l ¢00)

vi0l



US 9,274,932 B2

Sheet 11 of 52

Mar. 1, 2016

U.S. Patent

BDIAISS

Pueel 1l "Ol4

(1o2lqns 1s8))
_ voil 19LI0)SNO IOAIDS-(JoM

GL1E \

¢0ll

_— S
/ .

JOAISS gam
sl

Bﬁ?

Walp

g0}



US 9,274,932 B2

Sheet 12 of 52

Mar. 1, 2016

U.S. Patent

sonuas  Bunssy

eseqeiep
solysiels

uoijeoldde Bunsa)

0icl \

\n
] JATA?

ajy Aoy

802} ‘Reesa)

90¢l
saujnel
JBAIDS QoM
iy
474"
R JBAISS gam JUR1D
yicl

v¢l Ol

912l

ﬂ JaWwlo}sho Jaries-goam

195MOIY

7

)

8lci

e

Josmalq

AR

Av4®

\ Jandwos Jus|2



US 9,274,932 B2

Sheet 13 of 52

Mar. 1, 2016

U.S. Patent

aseqemep
sonsnels

a1} Aoy
‘Aeaqy|

S
D
Al

wege [T\

~— ¢¢ll

gdél 9l

JDWIOISND JoAISS-JoMm

9L

vecl

Ve aly A=y

Arlqu

iy ~

\

0ccl

1BABS GaM JUBHD

JISMOUY

Josmalg

JandwioD e




US 9,274,932 B2

Sheet 14 of 52

Mar. 1, 2016

U.S. Patent

oonlas Bunpsay

aseqelep
SONSHE]S

8y Aey
‘Arelqy)

fuiy

14714

P
P

¢

l Ol

JBIO)sSNS Jehlos-goam

J3sSMoIq

198M0I]

Janas gam JuaI

183NdWoD sy




US 9,274,932 B2

Sheet 15 of 52

Mar. 1, 2016

U.S. Patent

aoines Bunss)

274"
{

ssegejep
Soysels

uni 380}

N’

159

ol Aoy

‘el

dct 9l

JBUWOISND JIBAl8S-gam

lasmoiq

juiy

a

AN

\ goepal
uonembiyuod jsa)
A

0cct

1o/IBS oM JUBID

>

<=

Jasmolq

Jndwoo jualo




US 9,274,932 B2

Sheet 16 of 52

Mar. 1, 2016

U.S. Patent

aoialas Bupse)

aseqelep

sonsyels

oy Ao

‘Aresqy

A\

\\\.\|/

9lel

3¢l Ol

/ JBUOISND IBAls-gam

T

clel

w3y —

A\

JaMDS gom Jualo

s
./
>

| ——

| 1aSMOIq

[

UL

A..mmmn gam

)

817l

Jasmolq

Jendwe Juato

\

0vcl




US 9,274,932 B2

Sheet 17 of 52

Mar. 1, 2016

U.S. Patent

soiales Bupsa)

asegejep

soisnels

ualpedxe

oy Aey
‘Aelq)|

L
[

fy _ —

JoAIeS gam JusiD

N

4¢1 Ol

I) JDLUIOISND IBAISS-0OM

T

Josmalq ™~

BO
A

34

I3sSmo.qg

Jsndwiod a0



US 9,274,932 B2

Sheet 18 of 52

Mar. 1, 2016

U.S. Patent

soines Bu

)]

aseqejep

soisiels

aly Ay

‘elqy)

Ry ~

19AI2S Gom JuUaNR

\\\\\\)

¢l Old

IBUICISND JaAISS-am

JasmoIg T~

198M0Ig

JEndwiod jusip



US 9,274,932 B2

Sheet 19 of 52

Mar. 1, 2016

U.S. Patent

a01ues Bussy

ssRqRIED

SONSHELS

a|y Aoy

‘Aresqy |eondjeue

—~

iy _ _

19AIBS GOM JUBID

H

¢l Ol

JRUIOISND JaADS-(aM

125MOIY

185M0Jq

Jayndwioo juaip




U.S. Patent Mar. 1, 2016 Sheet 20 of 52 US 9,274,932 B2

OPTIMIZATION
SERVICE

&
"

h 4

WAIT FOR NEXT

EVENT
ANOTHER
1302 — EVENT
A A ?
INITIALIZE
NEW »
CLIENT
N 1306
TEST SET
upP o
N 1310
TEST RUN
SET UP v
N 1314

TRIALRUN| i

N 1318
TEST RUN
1324 M 1322
HANDLE
STATUS
OTHER STATUS »
EVENTS REQEEST
N 1326

/

1328

FIG. 13A



U.S. Patent Mar. 1, 2016

Sheet 21 of 52

( INITIALIZE NEW CLIENT )

1330 —

RETURN
SUCCESS
RETURN
1 342 ACKNOWLEDGMENT
A
1340
~ PREPARE AND
RETURN STORE CLIENT
FAILURE RECORD

DOWNLOADED

1338

o
-

h 4

CARRY QUT
DIALOG WITH
CLIENT TO
COLLECT CLIENT
INFORMATION

RETURN
FAILURE

AUTHENTICATE
AND AUTHORIZE
CLIENT

CLIENT
AUTHORIZEL

RETURN
FAILURE

IDENTIFY WEBSITE
DOMAINS, COOKIE
DOMAINS, LIBRARY
DIRECTORY, HTTPS
USED, ETC.

RETURN
FAILURE

Y

o
<

¥

DOWNLOAD
LIBRARY AND KEY
FILE

FIG. 13B

US 9,274,932 B2



U.S. Patent Mar. 1, 2016 Sheet 22 of 52 US 9,274,932 B2

( TEST SETUP >

4
|

h 4

SOLICIT TEST

1346 ~—— INFORMATION
Y

RECEIVE TEST

1348 INFORMATION

NFORMATIO

RETURN
COMPLETE

FAILURE

PREPARE TEST
RECORD AND

ENTER IN 1350

DATABASE

FIG. 13C



U.S. Patent Mar. 1, 2016 Sheet 23 of 52 US 9,274,932 B2

(TEST RUN SETUP)

ol
-
y

h

RECEIVE TEST INFO
1354 ——| AND OPEN TEST-
RUN RECORD Y

TEST INFO
QKAY

RETURN
FAILURE

Y |«

A 4
SOLICIT TEST-RUN
ATTRIBUTES,
1356 ~——| LEVELS FOR EACH
FACTOR, SEGMENT, Y

ETC.

INFO
RECEIVED

SOLICIT TEST-RUN
1358 DESIGN INFO Y

TEST-RUN
DESIGNED

STORE TEST RUN
1360 ———v SET STATUS =
CONSTRUCTED

FIG. 13D



U.S. Patent Mar. 1, 2016

A

Sheet 24 of 52

( TEST RUN >

h

SET STATUS =
ACTIVE

—~— 1366

>
-

h 4

DO WHHLE TEST

1368 — RUN NOT
COMPLETE
L
1569 —| | e
1370

SET STATUS =
COMPLETE

A 4

RUN ANALYSIS

REPORT
RESULTS

— 1372

— 1374

—— 1376

FIG. 13E

US 9,274,932 B2



U.S. Patent Mar. 1, 2016 Sheet 25 of 52 US 9,274,932 B2

@NDLE RUN EVEN'@

ol
L]

Y

WAIT FOR NEXT
EVENT

1380
_

CALL TO WM

SETUP
?

WM SETUP

1382
e

CALL TO WM

CONVERT
?

WM CONVERT

FIG. 13F



U.S. Patent Mar. 1, 2016 Sheet 26 of 52 US 9,274,932 B2

< WMSETUP )

h 4

RECEIVE MESSAGE
ORREQUEST |~ 1384

ACCESS DATABASE |— 1385

ACTIVE TEST PAGE
?

CUSTOMER

AUTHCRIZED
?

PREPARE

MODIFICATIONS TO — 1388

WEB PAGE AND SEND
TO CUSTOMER

Y

RECORD PAGE | __
ACCESS 1389

FIG. 13G



U.S. Patent Mar. 1, 2016 Sheet 27 of 52 US 9,274,932 B2

( WMCONVERT >

RECEIVE MESSAGE
OR REQUEST

ACCESS DATABASE

ACTIVE
CONVERSION

PAGE
?

CUSTOMER

AUTHORIZED
?

RECORD
CONVERSION — 1330

FIG. 13H



US 9,274,932 B2

Sheet 28 of 52

Mar. 1, 2016

U.S. Patent

<TwIY />
<Apoq/>
vl Ol S
<ATR>
<ATR/>
<eSoATR />
<ueds />
</ o1 UOjINE uUSSIT,=3Te Bl ussaf uiq o3rs owep/sobewr,=oIs SuT>
<uNOLENE IYASHI wh,=pt ueds>
LLUORANY WM, =PT ATP>, W " UOTSIDATOD,, =F&IY B>
<ATR/>
</ uI I9FI0 usean,=jre ,.Bdl ussxb xegzo ®31Ts omep/sebewt,=015 LuT>
<uIBJJO WH,=PT ATE>
<nIYBTIT,=PT ATP>
<ATP/>
<aTR/>
</ 4T oxeH ueoan,=3TR ,Bd[ -ueezb sy °3Ts owep/sebewt,=0as Bwi>
<.0I8y WM,=PT ATP>
<y IFOTu=PT ATP>
<ATR/>
<ATP/>
</ ul ®UTTPESH uesan,=3Te .Bd[-uesab py e3Ts owep/sebewr, =016 Hwt>
<, OUTTPESY WH,=PT ATP>
<yIOPESY,=mPT ATE>
<, ASUTERUOD ,=PT ATP>
#O.VP \'.JI\_ A:u.unm]ﬁ.ng:"ﬂu.ﬂ LTR> _
<adraos/s! {) dajes mm<yidraoseael /axey,=odAy 3d1a08>
<= - Spon Buryoeay motaefed STTUSPTH !JISEUT --i>
<&poq>

2op) —| <pesu/s]
< dTIos /5<, 80 Tdeo ma /a8l /moo - oTTwSpTA - aam/ f 1d3ay, =038 ,sdrrosearl/qxey, :=ediy jdrIoss>
<e - ATEIQTT FUSTTD WACIIRTH UCTIRZTETIAD STTWRPTM :JIBSUT —-i>
<ariye/>
{ {xdp xdog:utbieu }Isgzo umy
/#bng utbaewm sTyqniop geT 3es9xy/{ (xdp xdg xdgy xdog:urbem } ubtiy < « { fxdp xdp xdpg xdgg:urbrem (xdgGyiuapTE /qubBTa:iqeoTy l3ybray
/xbug utbzew eTqnop geoT 3e@sexy/{ !xdgp xdp xdp xdggiutbaew } 3FOT4 < » { /xdpz xdp xdog:urbren :xdg9g :UIDTM !3IST:3eCTF }IISTH
{ xdyg 0 *dpz =dpz:Burpped )iepesyg
{ txdzgs:uyspte :xdo99:3jybrey /yIoqusny/lojne xdgg:iutbBaew !¢ ¢ jeedez-ou (64(-6q o3Ts omep/gobewT) TIn IFFF§ puncabyoeq }asurejucoy
{ !euou:aspaoq }bBmr { !Ixeojuen:ubTTE~3xXe3l !LqLAcdap :punoxbyoeq g :Burpped !p :utbrem } Apoq
<utsa/aaes,=ediy eriyss
<3T3T3/>uIoFie(d uoTiezTwrido oTTwepIM | ybnoayzsyresr sbeg ButpueT (93TS OoM OWSECOTITI>
</ wB-ELO=38EIRYD ! TWIY/3Xe],=3usjuod ,odir-juejuol.=atnbe-dijy ejou>
<peds
<uTHIUX/GE6T/BT0 gh smn/ /1 A3, =SUTIX TWIY>
<uWPIP TRUOTITSURYY - TTWIYX/QLA/ TTURUX/HL /B0 ga wan/ /1 d3q9. W NE/ /TRUCTITSURIY Q' T THIHX CIA//JEM/ /- OITHNd TWIY TJXIOOTi>



U.S. Patent Mar. 1, 2016 Sheet 29 of 52 US 9,274,932 B2

simplecapi.js

{imodify the page based on the experiment data
var g_data=nulk;
var g_moniker=mul};
var g_uid=nui;
function loadExperiment{} {
getExperimentDataFromServer();
var replacements = g_data;
/frender the new elements that where loaded from the server
for (vari=0; 1< replacements.length; i++) {

document.getklementByld(replacements(i}. diviD).innerHTML=replacements{i].content,
1
}

[ithis simulates the kind of data the widemile server would retum.

ffeontroljs contains contents of factors and levels to update on the page see below.
ficontrol js call setbxperimentData(data)

/i{diviD:"hero" content:"<img src='pentagon.png'ait="pentagon/>"},

/KdiviD:"info" content." This is a green pentagon.Look how pretty itis."};

function getExperimentDataFromServer(}{
ficreate new script block and add to the browser DOM to load external server call
var script=createElement("script” document.body);
script.src="http://ots.server.comfjs-control"+g_moniker+"/"+g_uid+"/control js";

}

iidata[{diviD:"hero",content; "<img src="pentagon.png'alt="pentagon’/>"},
/I {diviD:"info" content" This is a green pentagon. Look how pretty it is."}];
function setExperimentData(data){

g_data=data;

}

function createVisitor|D() {
var value=nuij;

if (document.cookie["uid]==null) {
valug=newDate().time+"-"+rand(10);
document.cookie]'uid"}=newCookie(value);

}else {
value=document cookie["uid"]

}

return value;
}

function setup(meniker) {
g_moniker=moniker,
g_uid=createVisitor|[(};
loadExperiment();

}

FIG. 15



U.S. Patent Mar. 1, 2016 Sheet 30 of 52 US 9,274,932 B2

@
@
®
- N/u)—-)—%ﬂ:
«©
~— O Y ©
~y o = —3 @
(D \
o
O (5]
=
s (3]
\/G-%U-émh‘ﬁwﬁm <E
\q, %)
i - ) @ x
& o D
= L

1604\
e
1612 —
e




US 9,274,932 B2

Sheet 31 of 52

Mar. 1, 2016

U.S. Patent

a9l ol

vi9l

819l



U.S. Patent Mar. 1, 2016 Sheet 32 of 52 US 9,274,932 B2

h
FIG. 16C




U.S. Patent Mar. 1, 2016 Sheet 33 of 52 US 9,274,932 B2

FIG. 16D




U.S. Patent Mar. 1, 2016 Sheet 34 of 52 US 9,274,932 B2




US 9,274,932 B2

Sheet 35 of 52

Mar. 1, 2016

U.S. Patent

491 'Ol
lelo - [elo [l oo
c) _mJ “m“ “md
llk,””ﬁ,|mvxw@m9\ 199}
S 89l a
Gl @
99} T L e
[elo] o 2!

669l O¥9L  L¥OL Zhol
..... R S S G
e > [zlo > z#e > [gle
N\
@Sl\ 8E9l 5vol

19l



US 9,274,932 B2

Sheet 36 of 52

Mar. 1, 2016

U.S. Patent

991 Ol




US 9,274,932 B2

Sheet 37 of 52

Mar. 1, 2016

U.S. Patent

HO9l Old

=
()
<

1771
|
"

w A

{—
-
Srd

1
RO

[ « 5 ]

D

B,

v

[N

@ o o) o

o > [ > exe > [ele> [olp > [ole

¥aal |\



US 9,274,932 B2

Sheet 38 of 52

Mar. 1, 2016

U.S. Patent

e > [1e e > g > 28 > 1o | ]
e > (|8 L#8 > (210 > Z#8 > |13 e > LB 142 > 1210 > 7#9 > |18 | ]
70 > [ e > 7 > z#e > [ile e > 1 e > [zl > 7#e > Iile | ]
4 IERNE e » 70> zie > [0 e > [ \#e > [glo> z#e > [ole | »]
Zi#e Lie > [¢lo > g#e e 1o > 2l > Z#e —]
FEERNE L#e > [ole 148 > lole L#s > [ol —
10 ra g A m
) -
L
T N 1901
/|mo9
T T
Y % T

999}

099} —~_ Z# > 1B b#6 > 120 > z#o > [\ | ¥
A Z#e > ok /148 > gh> z#e > [ole |
2991 e He > 2P > 7#o —
l#e > [ole [/ L#e > [oje —
Lf8 / 10 —]

8991 —/

191 Ol



U.S. Patent Mar. 1, 2016 Sheet 39 of 52

T

h 4

aray = {g, @,...8};
¢cNode =
DOM.currentNode( );
a=0

Y

rPath
(a,array,cNode)

1702
o~

1706
o~

return array
and a

FIG. 17A

US 9,274,932 B2



US 9,274,932 B2

Sheet 40 of 52

Mar. 1, 2016

U.S. Patent

{spono

‘Aee e}
g.1 "9l ey = LL_wo

‘d = apono
oL —"

h
™
Rl

e pue
Aelre Ll

++B
{+0+1] /
+ adA} Juswsie
= [eleie 8¢l
.
e 8Ll N
N djo
{jusied iusied )
UBIP|ILD UM 8poND | [+ ¥3pU +] + adky

apono Jousred = d QMEY BROND

saop

BABY SPOND
sa0p

{0 Xapul sujuLs}ep
Bpono jo Jusied =

A

swse = [elfeue

V2Ll - 9z4) 7

0
‘lalinuspl + # + 90A)
juswae = [eleue

_
PLLL e el

ARiuept
oABY BPOND
sa0p

Il\ apoNo
pue ‘Aeue ‘e on909)
0LLL




U.S. Patent

Mar. 1, 2016 Sheet 41 of 52 US 9,274,932 B2

{ unique D }

h 4

1740
receive array and &, /-
i=0

h 4

Y~ 1742 ya 1744

retumn array
and a

1748
Ve

array{i] contains a4

demarcated ID
?

a=i+1

1750
i=i+1 /-—

FIG. 17C



U.S. Patent Mar. 1, 2016 Sheet 42 of 52 US 9,274,932 B2

{ print path }

¥

receive array and &,
i=0;

print null skring

print arrayli]

print *<”;
j=i+1

FIG. 17D



U.S. Patent Mar. 1, 2016 Sheet 43 of 52 US 9,274,932 B2

{ find node

¥
receive a, array, seti=
a-1;
set cNode = root of
DOM 1

1802

1812
1810 e
/—

p = find node in DOM

arrayi] contains # ID in arrayl} = =

demarcated ID cNode.ID by |Dat::nﬂ%]|0 in
1824
> 1814 —~_
Y
N
cNode.type =
arrayli]-type
?
1818 —
Y
1830 R 128

return cNode

find node

n FIG. 18A
\1832




U.S. Patent

1844 TN| = chitd of cNode

Mar. 1, 2016 Sheet 44 of 52
| find node H }
¥
P 1840

array{il.index defined
?

with index array{i].index

nxt defined

1846 —

US 9,274,932 B2

o~ 1850

nxt = child of cNode
with largest index

nxt = sibling within a
threshold index
difference of
array{il.index and with
type == arraylll type

i--
cNode = md

FIG. 18B



US 9,274,932 B2

Sheet 45 of 52

Mar. 1, 2016

U.S. Patent

Vol

Qe
q 6] FEULPYD § P BUER SASR0F AP0IE 101,

WOWBIT) /F LD ABR BIL YED A

WO SHLCK

raRey BlusEsg 100pU s edg ey X mt.._n:c.. LT

peod snusy

IHCd4NS ENHEERLE] BINAEES r S1INA0Y

HOHURE + UEUY BTG

TREOIeT]

"SH0jjF AR PUE {B120S 'IJIQOW JAOA STOIIT SNSRI

Sulapp sem Bupasyew 1eY5IP J1 IBUM |

WA B K IDAIRD 0] Nk BEd DAL

Zuamodb s, Auedwod anod |

JUeADOY oF

REOT SDBAGD A Mty _
i




US 9,274,932 B2

Sheet 46 of 52

Mar. 1, 2016

U.S. Patent

g6} Ol

IO AT

CSHO R QN JUT (RG5O IO SSOIIZ S
QLR BAUP YEY] FIRELHINT put SROESSUL WRA(RI JS0U I JIALEP o3 nDA JIQRUT I ©

£UImoud s Auedwiod JnoA
Bupap sem Bupionew 1enbip J Jeum |

“ybisuy ujen

Busst sropayieyy o

wopsaqie) i
G0 I0CHY ISR

uolsiA

£ 1N0ay 1HOddNs 38ILH34X2 SIDALETS « SLONAOKHd SNOINTOS




US 9,274,932 B2

Sheet 47 of 52

Mar. 1, 2016

U.S. Patent

o6l Ol4

B mﬁoﬂmu

parGE O SoATT AUOD { SIBRD) {QRUDT J650Y

QML PUT JUETOE

k<

OO JAGA SEOSIE SHRS0) OILRITUIN DAUE JBE SO0UIETRS
pur salessou ueAe 1500 o)L Jeaiop o) ok gowd spte Al esten O

£ 13 Butep sea Sunasens [eRBIP J TR, JBURS, SSSTD U

IR BUINIOS) 7S Y 0N AGLRRG BE0i G, 55D B
PLIST
g eI RAGRIWIOD

<4 Ui BnuoASY dsensulc pURlie <S5 lus
2 JIUGHO_2SSTD AP

e

o Ew: w}z.w

RO g S50 7
-

feliintdg




US 9,274,932 B2

Sheet 48 of 52

Mar. 1, 2016

U.S. Patent

acl

Ol

auzvbey
BUA f7 TP § RIS CLETIT R L LT N
: L LMIOYSIGIOE I GG MOR R4 BIT Y
o WOV BB}
A sUTYS FeuE)

S 1ioay 180ddig ERTEESHE] S30IAHIS + SLONUCH

ENOLLMOT

FETTER]

SUOED QMA [RID JRDGS DIHISL ADA SSa10 £ind ]
HOEWRWAS DAUP IO SEXRALPIRD PR SPOLITILE WOARIH 250U D) JIMEAD 03 DDA 2jqRUT I |

i43moab s Avedwio? anch w
Bujapp sem Supeaet je36ip 51 eym |

SNUBADY 95EDDUT

G SPUSIHaM =




US 9,274,932 B2

Sheet 49 of 52

Mar. 1, 2016

U.S. Patent

NdmiRpp P

afy py /f Buplodslf pUE SSRAIRLY PUBLEEG
BMAN SuRoNIBR 10 Jr & pustls SugaKew (Bpél odoy

zadop
Q018 7/ RRUDAR 15004 5Y § 1p BulEn SImaRsoW APNS FOIE,

WOD'S0QU0] J7 L0 MEN 04 BIRg 5]

[AILER ST 1LY
{7 0deUG e3KE ] BUIUSHRIL0Y IX0P HAaTd G [UREANd 2o SONKRLY oA

paag snIUaY

£30MH3E + S10NA0Kd

SHLMRUWOT

B 1NOBY

2 | I

180ddMS ECIHEER S

poddng + wie

_ofiofiuo esinboy P
sapfjeuy

ENCILAT0S

2t

461 Ol4

]

VETQ IOWeYEng

4 spueudp Buieuwe
ngd o1 Bundepy
Supsntew
CaMsuodsoy

'S END

DU P Sy oYM

siyBisul oy
UpEat pe By

payun sdewieay

UOISIA

Spuangam

N0A ISFIN0D $A BARH LFUREOND

ohvett > LaGog = sbedeay = vmupnia » DG » ERERE N

oo .m_ucn;_uo..,.,.?..c‘..\hﬁze_w m

vi6l




US 9,274,932 B2

Sheet 50 of 52

Mar. 1, 2016

ydmiapp p

08y Py /f BULIOEON PUD SHIARUY PUCRIQ
SraaN Bunayie 301G 7 Bulst Aipesls pueds SuRex:ow (ox6ig niodoy

o reboyy
[GIA J/ SPHEIG 500G OF SSULELD DB BUSA Si0183Ie R JAPNIE oI,

WO RIGIOE /Y LU0 MON BU), FiRg S
WOIEIQC
24 BUTYS 6a3B] BUUmiod J60pV murndy |0sAyg 104 conkjiuy o

pooy SNIULY

o B B
‘ mxumu&,%w

« @GO
« [RISOS

e

S0 .1008Y 1504d4Ng ASHIINZ FIVAHAL + SLONAOHD

461 Ol

ONOIEND
LR TR
shetue ‘eanbay

sopkeuy
payn

uoisIp

SROLLNTOS

L4

O/ 0TIIGD 8 9ARY [SLojisend)

P PLITTE
© 4 omuRvAp Budiowe

mp_”ﬁ_“ «_”._oup.p_h R nok oy Budepy
wrieni paivabory - Bunsiew
sdewnesy s aasuodsey

SpuSIIgeM

Tmc,‘Em:_

U.S. Patent

e > [agos » sbiedgag > wewgag > Llag “.Ew_uc#ac = g > fohnie %

)l
\ 1H03 SPUDAQE B?ﬁ:..a::w M
b

PR

wr




US 9,274,932 B2

Sheet 51 of 52

Mar. 1, 2016

U.S. Patent

ydwviapp p

ety

auzediy
monm 1 $pUsIy 200G O} b ¥ tLEl s 3247 "_n«:)._w Heig,

WO s0QI0) F LG MGN B3] BIFT W

KO B0}
anyg . BULHOHEROG FOGRIA 4

SN LNeav LHOAdNE

# yoseag _ POKING < whe SaUNLWED

ASHYTIXT SINALIS + SLYAA0Rd

ol = Iagos - efediag s wmugale s Bleg s oweesgad s Bt s Rbvg > Blwe s Dlen s lolv

06l Old

[asoipy pLo paeg

TRIBUID SR RERG IMEND
oYU pUT o oL o Apuruip BuBipwy
sfiefue ‘asnbay < hhﬁ"u& u.m_- 4ok o) Bupdepy
sofjeuy <arsnl paierboqu Bupoxien
paun sdeueoy aAjsuodsay

b

SHOILLMTIOS

Spuangam

sorg DA JORIGD S SABH LSUQIISAND

_‘.

nt

/

i
1

WX SRS G s S hY w




U.S. Patent Mar. 1, 2016 Sheet 52 of 52 US 9,274,932 B2

2002 2003
e

CPU | CPU
N MEMORY
CPU 4 CPU
2004-“// 1 \
2008
2012
__| SPECIALIZED /
—| PROCESSOR m/ BRIDGE
2018 —/ 2014 2016
a
—— 2020
BRIDGE

| | ; |

CONTROLLER CONTROLLER CONTROLLER CONTROLLER CONTROLLER CONTROLLER

. | ! | |
202/ \ \ \
2023 2024 2025
MASS

2026 STORAGE

2027

DEVICE

FIG. 20



US 9,274,932 B2

1
GRAPHICAL-USER-INTERFACE-BASED
METHOD AND SYSTEM FOR DESIGNING
AND CONFIGURING WEB-SITE TESTING
AND ANALYSIS

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit of Provisional Applica-
tion No. 61/485,571, filed May 12, 2011.

TECHNICAL FIELD

The current application is related to web sites and web-site-
based businesses and organizations, and, in particular, to a
method and system for designing and configuring web-site
testing and web-site analysis in order to collect data that can
be used to evaluate and/or optimize the web site.

BACKGROUND

During the past 20 years, the development of the hypertext
markup language (“HTML”) and web browsers has led to the
creation and development of whole new industries and busi-
nesses, including Internet retailing of goods and services,
search-engine services, electronic encyclopedias, direct
retailing and distribution of multi-media content and soft-
ware, social-networking services, and a variety of additional
industries and businesses. Many businesses are based on a
web site, a collection of interlinked web pages that are pro-
vided to web-site users from a web server, generally one or
more servers or higher-end computer systems that receive
web-page requests from users via the Internet and respond to
the requests by transmitting, to requesting users, HTML files
that encode web pages displayed by browser applications
executing on users’ computers.

The creation and maintenance of an effective web site may
involve engineers and professionals of a number of different
disciplines, including software engineers and web-page
developers, artists, writers, and other content creators, and
analysts who monitor a web site and evaluate the effective-
ness of the web site on an on-going basis. As one example, an
Internet retailer may spend millions of dollars in retailing
web-site design and development, using teams of engineers,
developers, and content creators, and may undertake continu-
ous evaluation of retail results associated with a retailing web
site, using marketing professionals and other analysts, in
order to attempt to identify potential changes to the web site
that can be fed back to the designers and content creators in
order to optimize the web site with respect to specific goals
and constraints. For an Internet retailer, the total amount of
sales generated from a retailing web site, the overall number
of visitors who navigate past the home page of a website, the
number of redirections to allied web sites using links pro-
vided on pages of the web site, and many other metrics may
comprise the goals for web-site optimization. Constraints
may include human and financial resources needed to effect
the changes to the web site, the time needed to make the
changes, compatibility of added features with widely used
browsers and browser plug-in programs, and many other such
constraints.

As with any type of live or run-time testing, testing under-
taken by marketing professionals and analysts may represent,
to a web-site-based business or information service, large
expenditures in money, time, and other resources. Further-
more, live testing may unintentionally negatively impact the
web site, by creating unintended interruptions, errors, and

10

20

40

45

55

2

access delays for customers. Costs and potential liabilities of
web-site testing may therefore constitute a significant addi-
tional constraint for web-site optimization. For this reason,
web-site developers and owners seek cost-effective, time-
and-resource-economical, and minimally intrusive methods
and systems for web-site testing that can provide a sound
statistical basis for web-site analysis and optimization.

SUMMARY

The current application is directed to methods and systems
for designing and configuring web-site testing and analysis.
In certain implementations, a testing service collects cus-
tomer page-access and conversion information on behalf of a
web site. The testing service is straightforwardly accessed
and configured, through a web-site-based graphical user
interface, and is virtually incorporated into the web site.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 provides a context for discussion of web-site-testing
and web-site-analysis design and configuration.

FIG. 2 shows a simple, exemplary web page.

FIG. 3 shows the contents ofan HTML file that encodes the
exemplary web page shown in FIG. 2 and that includes simple
modifications to incorporate testing and analysis.

FIG. 4 provides a tree-like representation of the contents of
the exemplary HTML file shown in FIG. 3.

FIG. 5 illustrates a simple web site comprising seven web
pages.

FIGS. 6-7 illustrate factors, factor levels, and test design.

FIG. 8 illustrates the concept of segments in testing of web
pages.

FIG. 9 illustrates the data and data structures that define
tests, test runs, and experiments.

FIG. 10 illustrates the nature of the statistics, or test results,
that are collected for a particular test run.

FIG. 11 illustrates a currently disclosed testing environ-
ment.

FIGS. 12A-H illustrate a general method and system for
web-site testing.

FIGS. 13A-H provide control-flow diagrams for a web-site
testing service.

FIG. 14 shows the HTML modifications used to virtually
incorporate a testing service into a web site.

FIG. 15 provides an exemplary script library downloaded
service.

FIGS. 16 A-I illustrate generation of element paths, which
fully describe the location of elements of a web page within a
DOM-tree representation of the web page, and unique iden-
tifiers for web-page elements, which provide relative paths
from an element associated with an identifier to the element
within the DOM-tree representation of the web page.

FIGS. 17A-D provide control-flow diagrams for routines
that generate stored digital encodings of element paths and
unique IDs and that generate a symbolic string for either a
digitally encoded element path or unique ID.

FIGS. 18A-B illustrate a routine that locates a node, in a
DOM tree, based on a unique ID that describes the node.

FIGS. 19A-G illustrate example operations and specific
uses of the graphical user interface for web-testing design.

FIG. 20 illustrates a general computer architecture appli-
cable to many different types of computer systems on which
graphical-user-interface-based test-and-analysis design and
configuration systems can be implemented.

DETAILED DESCRIPTION

Certain implementations of the methods and systems, dis-
cussed below, are directed to live, real-time testing of a web



US 9,274,932 B2

3

site. There are many different types of web sites and web-site
servers that can be tested by the described methods and sys-
tems. It should be noted, at the onset, that the method and
system implementations discussed below are not restricted to
testing and analysis of a particular class or type of web sites,
but are generally applicable to a wide variety of different
types of web sites and web-site based businesses and organi-
zations. For example, these methods and systems can be
applied to test and to analyze the effectiveness of an Internet-
commerce web site, but can also be applied to non-commer-
cial information-distribution web sites, including on-line
encyclopedias, to non-commercial social-networking web
sites, to search-engine service providers, and many other
types of web sites and web-site-based businesses. It should
also be noted, at the onset, that the methods and systems,
discussed below, are primarily directed to minimally intru-
sive, cost-effective, and time-and-resource-efficient live, on-
line experimentation and statistics collection. The statistics
and data collected by these methods and systems can be
analyzed by a variety of different analytics packages in order
to generate various types of reports that provide information
regarding web sites that can be used for optimization. The
analytical analysis and reporting may be executed on the
testing service computer facilities, or on remote computing
facilities. These methods and systems also provide time-effi-
cient and cost-efficient test design and test implementation.
FIG. 1 provides a context for discussion of web-site-testing
and web-site-analysis design and configuration. In FIG. 1, a
server 102, comprising one or more servers and/or other types
of computer systems, transmits HTML-encoded web pages
through the Internet 104 to alarge number of user or customer
computers, including as user computer 106. As discussed
above, the web server may be owned and operated by an
Internet retailing organization, an information-distribution
system, a social-networking system, or another type Internet-
based transactional or content-distribution system. In gen-
eral, the web server runs continuously, at all times during the
day and night, providing HTML-encoded web pages and,
usually, additional types of information and services, includ-
ing downloads of executable code, scripts, and other such
information for specific types of web-based applications.
FIG. 2 shows a simple, exemplary web page. A web page is
described by an HTML file, discussed below, which is pro-
cessed by a web browser executing on a computer in order to
generate a web page, as shown in FIG. 2, that is displayed to
a user on a display device. The exemplary web page 202
includes a headline graphic 204, an offer graphic 206, a hero
graphic 208, and a button graphic 210. The exemplary web
page is subsequently discussed in the context of tests and
experiments in which altered versions of the web page are
provided to users of the web server that serves the web page
in order to test the effects of modifications to the web page.
FIG. 3 shows the contents of an HTML file that encodes the
exemplary web page shown in FIG. 2 and that includes simple
modifications to incorporate testing and analysis. These
modifications, used to virtually incorporate a testing service
into a website, are discussed below, with reference to FIG. 14.
A complete discussion of HTML is beyond the scope of the
current discussion. In FIG. 3, portions of the HTML file are
correlated with features in the displayed web page shown in
FIG. 2. In addition, general features of HTML are illustrated
in FIG. 3. HTML is hierarchical, in nature. In FIG. 3, double-
headed arrows, such as double-headed arrow 302, have been
drawn to the left of the HTML code in order to illustrate tags
and tag scoping within the HTML file. In general, HTML
statements are delimited by a pair tags, and are hierarchically
organized by scope. For example, an outermost statement

10

15

20

25

30

35

40

45

50

55

60

65

4

begins with a first tag of a tag pair that begins with the text
“<html xmIns=" (304 in FIG. 3) and ends with a last tag of the
tag pair that begins with the text “</HTML” (306 in FIG. 3).
The scope of outermost statement encompasses the entire
HTML code. The double-headed arrow 302 at the left of the
HTML code, which represents the scope of this statement,
spans the entire HTML file. A second-level that begins with
the first tag of a tag pair “<head>" 308 and ends with the last
tag of the tag pair “</head>" 310 spans a first portion of the
HTML file, as indicated by double-headed arrow 312, and a
second statement bounded by the first and last tags of a tag
pair “<body>" 314 and “<body>" 316 span a second portion
of'the HTML. file, indicated by double-headed arrow 318. By
examining the tags within the exemplary HTML file, shown
in FIG. 3, and the double-headed indications of the scope of
tag-delimited statements, the hierarchical nature of HTML
can be readily appreciated.

FIG. 4 provides a tree-like representation of the contents of
the exemplary HTML file shown in FIG. 3. The tree 402
shown in FIG. 4 is constructed from the double-headed
arrows that annotate the HTML code, in FIG. 3, that span the
scopes tag-delimited statements in the exemplary HTML. file.
For example, the root node 404 corresponds to double-headed
arrow 302, and the second level “head” 406 and “body” 408
nodes correspond to double-headed arrows 312 and 318 in
FIG. 3, respectively. Note that, at the very bottom of the tree
representation of the HTML file, shown in FIG. 4, the four
leaf nodes 416-419 represent the four features 204, 206, 208,
and 210 of the displayed web page encoded by the exemplary
HTML file, shown in FIG. 2. Each of these nodes is essen-
tially a reference to an image file that contains a jpeg image of
the corresponding web-page feature. The head statement,
represented by node 406 in FIG. 4, includes formatting infor-
mation, references to highest-level resource-location directo-
ries, and a great deal of additional information that is used by
a browser to plan construction of a displayed web page. The
body statement, represented by node 408 in FIG. 4, includes
references to image files, text, and other features that are
rendered by the browser into displayed features of the web
page. Intermediate nodes include identifiers, particular met-
data information, and references to scripts that are down-
loaded and run by the web browser during web-page render-
ing and/or display.

As a specific example, node 416, a direct and only descen-
dant of the node labeled “headline” 410 in FIG. 4, corre-
sponds to the headline feature 204 displayed in the exemplary
web page shown in FIG. 2. This node also corresponds to
double-headed arrow 320 in FIG. 3. The statement “<img
src="images/demosite_hd_green.jpg” indicates that the dis-
played object is encoded as a jpeg image “demo_site_
offer_green.jpg” that can be found in a file-system sub-direc-
tory “images.”

In order to transform an HTML file into a displayed web
page, a web browser constructs a tree-like binary-encoded
data object referred to as a “document object model”
(“DOM.”) The exact contents and structure of a DOM is
beyond the scope of the present discussion. However, the
currently described methods and systems rely on standard-
ized DOM-editing interfaces that provide routines to identify
nodes and subtrees within a DOM and to edit and modify
identified nodes and subtrees. Once a browser has created a
DOM from the exemplary HTML. file shown in F1G. 3, DOM-
editing routines can be used to locate the node in the DOM
corresponding to the node “headline” 410 in FIG. 4 and
replace or modify that node to reference a different image.
Following modification, the web browser would then display
amodified web page in which the headline image 204 in FIG.



US 9,274,932 B2

5

2 is replaced by a different image. To effect more dramatic
changes, an entire subtree of a DOM, such as the subtree
rooted by a node corresponding to the node “right” 420, can
be removed or replaced, to change groups of display features.
While certain of the presently discussed methods and sys-
tems, discussed below, use DOM tree modification tech-
niques, other types of modification techniques provided by
interfaces to other types of binary representations of web
pages may be used, in alternative implementations. The DOM
is only one of many possible binary representations that may
be constructed and employed by web browsers.

Another feature of the exemplary HTML file shown in FIG.
3 is that the various features displayed in FIG. 2 are, in
HTML, wrapped by tag-delimited identifiers. For example,
the “wm_headline” tag indicated by double-headed arrow
320 and by node 410 in FIG. 4 s an identifier for the headline-
image-reference statement 322. Alphanumeric identifiers,
such as the identifier “wm_headline,” are introduced into an
HTML file in order to give easy-to-understand and easy-to-
use labels or handles for various objects, particularly objects
that correspond to displayed features in a web page. Although
objects can be easily identified in this manner, other methods
for identifying objects within an HTML file, as well as cor-
responding nodes of DOM trees and other such binary repre-
sentations of a rendered page, can be used to reference display
objects.

FIG. 5 illustrates a simple web site comprising seven web
pages. Each web page, such as web page 502, is represented
by arectangle in FIG. 5. Curved arrows, such as curved arrow
504, indicate navigational paths between the web pages.
Accessing the web site illustrated in FIG. 5, a user generally
first accesses a landing page 502 as a result of clicking a link
provided by another web page, such as a web page provided
by a search engine, or provided in a list of bookmarked links
by a web browser. The landing page is often, but not neces-
sarily, a home page for the website. A home page is a central
portal for access to all of the remaining web pages in the web
site. In general, a user navigates through the web site by
clicking on displayed links embedded in web pages. For
example, the web site illustrated in FIG. 5 is a retailing web
site. The landing page provides links to four different pages
510-513 that provide product descriptions for four different
products. A user, after viewing the landing page 502, may
click a link in order to navigate to a display of a product-
description page 510. In the exemplary web site shown in
FIG. 5, a user may subsequently navigate from a product-
description page or product-details page to a central order
page 520 that contains a button or feature 522 to which the
user can input a mouse click in order to order one or more
products. In certain cases, web sites may comprise a single
page and, in other cases, a web site may comprise tens to
hundreds or more pages, linked together in a network-like
graph describing various navigational paths between web
pages.

An example application of web-site testing would be to
monitor access, by users, of the web pages shown in FIG. 5 in
order to attempt to determine how often users end up navi-
gating to the order page and clicking the place-order button
522. One might then modify one or more of the pages, and
again monitor users’ access to the pages and subsequent input
to the place-order button 522. In this way, by testing collective
user response various alternative web pages, web-site devel-
opers and managers may be able to determine an optimal set
of web pages that provides the highest ratio of inputs to the
place-order button 522 to user accesses of the landing page
502. In testing parlance, clicking the place-order button 522,
in the exemplary web site shown in FIG. 5, is, in this example,

10

15

20

25

30

35

40

45

50

55

60

65

6

considered to be a conversion event. One goal of optimizing
the web site might be to increase the percentage of users
clicking on the place-order button 522 after initially access-
ing the landing page 502. However, conversion events may be
arbitrarily defined, and there may be multiple conversion
events for a particular web site. Optimization of a web site
may also involve multiple, often at-least partially contradic-
tory goals. One goal may be to increase the number of
accesses to any page other than the landing page by users who
have initially accessed the landing page. Another goal may be
to increase total accesses to the landing page, regardless of
subsequent page accesses by users accessing the landing
page. Another goal may be to obtain maximum possible con-
version rates, even at the expense of decreasing the overall
rate of page accesses.

FIGS. 6-7 illustrate factors, factor levels, and test design. In
FIG. 6, an initial, prototype web page 602 is shown. A web-
site owner or developer may decide to systematically alter the
prototype web page in order to test the effects of the system-
atic alterations, so that alterations that appear to maximize
goals can be made to the web page in order to optimize the
web page. The prototype web page includes a portrait image
604, a title 606, a user-input feature 608, and an informational
message 610. A systematic tester may decide to alter each of
these web-page features, one-at-a-time, in order to determine
the effects of the altered features on measured user response.
For the web page shown in FIG. 6, the measured user
response, or conversion event, would likely be user input to
the user-input feature 608. As shown in FIG. 6, a tester may
devise a first test web page 611 in which the prototype image
604 is replaced with a different image 612. The tester may
devise a second test page 614 in which the title feature 606 is
replaced with a different title feature 616. Similarly, the tester
may devise a third test page 620 in which the informational
message 610 of the prototype web page is replaced with a
different informational message 622. Finally, the tester may
create a fourth test web page 624 in which the user-input
feature 608 of the prototype web page is replaced with a
differently labeled user-input feature 626. The systematic
tester may change a single feature, in each of the four test
pages, in order to judge the effect of changing that feature in
isolation from any other changes to the web page that might
be contemplated. However, the strictly one-feature-change-
at-a-time method would fail to provide data for the effects of
various combinations of changes, such as changing both the
headline and a portrait and, moreover, would require signifi-
cant developer time and effort.

FIG. 7 illustrates a related approach to the testing approach
discussed with reference to FIG. 6. In FIG. 7, the tester has
prepared a table of factors and factor levels. Each factor in the
table is represented by a column, such as the first column 702
corresponding to factor 1. Each factor is a feature, or group of
related features, on a displayed web page that the tester
wishes to alter in order to determine whether or not to alter the
feature in order to optimize the web page with respect to one
or more optimization goals. The various alternatives for each
factor are referred to as levels. Thus, for example, factor 1,
represented in the table by column 702, corresponds to the
information message (610 in FIG. 6), for which the tester has
devised six different alternatives, each corresponding to one
of six different levels associated with that factor. The tester
has devised four alternatives for factor 2, the title feature (606
in FIG. 6), five alternatives for factor 3, the portrait feature
(604 in FIG. 6), and five alternatives for the fourth factor, the
user-input feature (608 in FIG. 6). Then, having specified the
factors, or web-page features, to be altered, and the various
different alternatives for each feature, the tester might try



US 9,274,932 B2

7

generating all possible test pages corresponding to all pos-
sible combinations of level values for the factors in order to
test the different alternative web pages to determine an opti-
mal set of four levels corresponding to optimal alternatives
for the four factors. Unfortunately, an exhaustive, combina-
torial test, in most cases, is not feasible. Even for the very
simple example of FIGS. 6 and 7, there are 1260 different
alternative pages, including the prototype page, which can be
constructed by varying between one and four factors accord-
ing to the variations, or levels, provided in the table provided
in FIG. 7. In general, for the statistics collected from testing to
have significance, a sufficient number of tests need to be
conducted so each of the different test pages is displayed a
relatively large number of times during the test. In the
example of FIGS. 6 and 7, each different alternative web page
among the 1260 possible alternative web pages may need to
be displayed hundreds or thousands of times to users in order
to accumulate sufficient test data to make valid statistics-
based judgments. In many cases, the number of factors and
number of levels for each factor may be far larger than in the
simple example shown in FIGS. 6 and 7.

The variations of factors, or levels, may include changes in
content, display size, display color, object position in the
displayed image, or many other different types of changes.
Again, as discussed above, a factor may include multiple
display features.

Because of the general infeasibility of full, exhaustive,
combinatorial testing of all possible web-page variations,
certain ofthe presently discussed methods and systems use an
experimental-design method referred to as “the orthogonal-
array method.” This method devises a non-exhaustive test
strategy that nonetheless gathers sufficient, well-distributed
test data in order to make reasonable inferences with regard to
the effects of altering the factors in all possible ways. In
essence, the orthogonal-array method involves devising a
sparse sampling of all possible variations of the web page that
provides information about the various dependencies
between the different levels of the different features. The
orthogonal-array method involves specifying the factors and
specifying the levels for each factor for a particular test run,
and then, based on the factors and levels for each factor to be
tested in a particular test run, devises a set of alternative web
pages, by varying the specified factors according to the speci-
fied levels, that provide a good basis for collecting statistics
for the features to be tested. The orthogonal-array method is
well known in testing and statistics. Many additional types of
test-design methods may also be used. Whatever test-design
technique is employed, each test run defined by clients is
associated with a test design that controls generation and
distribution of experiments, or modified web pages.

FIG. 8 illustrates the concept of segments in testing of web
pages. FIG. 8 shows the web server and users of the web
server using the same illustration conventions as used in FIG.
1. However, in FIG. 8, a first set of three users 802-804 are
marked as belonging to a first segment, segment 1, and a
second set of three users 806-808 are marked as belonging to
a second segment, segment 2. During live, real-time testing of
web sites, alternative versions of web pages are provided to
subsets of the total number of users, or customers, accessing
the web server. During a particular test run, altered web pages
are provided to a specified segment of users. A segment of
users, or customers, can be defined by any of a wide variety of
different parameters. For example, a segment of users may be
defined by the web page or link by which the users or cus-
tomers navigated to a test page served by the web server.

25

30

40

45

50

55

8

Segments may be defined by time periods, by the Internet
domains through which users access the Internet, or by many
other different criteria.

FIG. 9 illustrates the data and data structures that define
tests, test runs, and experiments. A testing service may, at any
given time, carry out a large number of different tests for
many different client web-site-based organizations. Each test
is defined by a test record, such as test record 902 in FIG. 9.
Information contained in the test record includes an alphanu-
meric name of the test, an identifier for the client on behalf of
whom the test has been created, a description of the test, an
indication of the time that the test was created, an indication
of the web page that is tested by the test, and a list of the
factors that may be involved in any particular test run associ-
ated with the test. Note that the factors can be specified by the
identifiers associated with features or objects displayed in the
web page. For example, referring to FIGS. 2-4, alist of factors
for a test of the exemplary web page shown in FIG. 2 may
include the alphanumeric strings: “wm_headline,”
“wm_hero,” “wm_offer,” and “wm_button.”

Any particular test may be carried out over a series of test
runs. For example, each test run may be carried out at a
different time, with respect to a different segment of users,
and may test a different array of features and feature levels.
Thus, each test record, such as test record 902 in FIG. 9, may
be associated with one or more test-run records, such as
test-run record 904 in F1G. 9. Test-run records include infor-
mation such as the levels to be used for each factor, with the
levels specified as URLs, or other references to images and
other resources, or as text strings or other data directly dis-
played by the browser, a current state of the test run, a descrip-
tion of the segment to which the test run is directed, an
indication of the particular orthogonal-array basis or other
test design for the test run, and an indication of one or more
conversion events for the test run. Finally, using the orthogo-
nal-array basis or other test design selected for the test run, a
test run is associated with a set of experiments, such as experi-
ment 906 in FIG. 9. Each experiment corresponds to an
altered web page that is displayed to users during the test run.
An experiment is essentially defined by associating each fac-
tor, tested in the test run, with a particular level, or referenced
resource, according to a matrix of test pages generated by the
orthogonal-array basis or other test design selected for the test
run.

FIG. 10 illustrates the nature of the statistics, or test results,
that are collected for a particular test run. The results include
indications of the test 1002 and test run 1004, the date on
which the test run was conducted 1006, a start time and an end
time for the test run 1008-1009, and a reference 1010 to a
results table 1012 in which test results are tabulated. The test
results table includes a row for each experiment associated
with the test run, such as row 1014 in experimental-results
table 1012. The row includes an indication of the experiment
to which the row corresponds 1016, a count of the number of
the times that the page corresponding to the experiment was
accessed by a user of an active segment 1018, an indication of
the number of times that a user who accessed the test page
generated a corresponding conversion event 1020, other simi-
lar numerical information in additional columns 1022, and,
finally, a computed conversion rate 1024 for each experiment.
The test results shown in FIG. 10 are but one example of the
type of statistics and data that can be collected during a test
run. Different or additional statistics may be collected accord-
ing to different test configurations created by test-service
clients.

There are many different possible ways of testing a web
server in order to accumulate test results, discussed above



US 9,274,932 B2

9

with reference to FIG. 10, for tests defined for particular web
pages and factors associated with those web pages, as dis-
cussed above with reference to FIG. 9. One method would
require the web server to design a test by creating all or a
subset of possible alternative test pages and to then develop a
test-page-serving system that would execute concurrently
with, or as part of, the web server on an intermittent or
continuous basis. As discussed above, testing methods and
systems that require the web server to develop and run tests
may be prohibitively expensive, both in time and resources,
for web-site owners or web-site-based organizations. Fur-
thermore, such testing methods can inadvertently cause seri-
ous financial losses and other non-financial damage to a web
site. For example, were the test pages improperly constructed
or served, sales or other activities generated by real-time users
may be lost and, in worst cases, the web site could potentially
lose business from particular customers and users altogether.
Real-time testing additionally involves significant security
risks. A malicious hacker or employee might be able to alter
the test system to display fraudulent or offensive test pages,
for example. Finally, similar to problems encountered in a
variety of physical and behavioral systems, poorly or improp-
erly design tests may so perturb the system being tested that
the statistics collected from the tests are meaningless or, in
worst cases, lead to false conclusions. For example, a poorly
designed test engine may introduce significant delays in web-
page service to customers or users. As a result, the conversion
rate measured during a test run may fall precipitously, not
because of particular alterations made to test web pages, but
instead because the significant time delay encountered by
users for whom the test page is constructed and to whom the
test web page is transmitted. For these, and many other rea-
sons, web-site-based-organization test design and execution
can be undesirable and, in worst cases, disruptive and dam-
aging to the web-site-based organization.

An alternative approach involves using a third-party testing
service, in tandem with the web server that serves the web site
to be tested. However, simply conducting tests by a third-
party server does not guarantee that the many pitfalls and
disadvantages discussed above with respect to web-site-
based-organization test design and execution are necessarily
avoided. In fact, in many cases, the pitfalls and disadvantages
discussed in the preceding paragraph may be exacerbated by
third-party testing of web sites and web servers. For example,
in the case that a test web page, requested by a customer,
needs to be prepared by the third-party server, in response to
arequest generated by the web site as a result of a user request
for the web page being tested, test-page serving may be
significantly delayed, deleteriously perturbing the users’
interaction with the web server to the point that the test
statistics end up meaningless or misleading. As another
example, security issues may be compounded by distributing
testing tasks between a web-server computer system and a
third-parting testing server. The presently discussed methods
and systems employ an array of techniques and features that
address these pitfalls and disadvantages, and that provide
minimally intrusive and cost-effective testing for web sites
and web servers.

FIG. 11 illustrates a currently disclosed testing environ-
ment. In FIG. 11, the web site 1102 is represented as one or
more servers or large computer systems that serve web pages
through the Internet 1104 to a generally large number of
web-site users or customers, including user 1106. The web
site or web server is regarded, in the following discussion, as
a client web server of the testing service. The client web
server also includes a client computer 1108 by which the
client web-server-based organization can access various

30

35

40

45

10

third-party services and web servers through the Internet.
Finally, a web-site testing service is provided by, in the imple-
mentation shown in FIG. 11, a distinct server or servers 1110
accessible to the client web server 1102, the web server cus-
tomer 1106, and client computer 1108 via the Internet 1104.

The testing service is used by the client web-site-based
organization, referred to as the “client,” below, to design and
run real-time, live tests of web pages provided by the client
web server to users. In certain implementations, the testing
service may run on the same computer systems as the client
web server. In general, the testing service is geographically
distinct from the client web server, and is concurrently used
by multiple, different clients for concurrently executing many
different test runs on behalf of the multiple clients.

FIGS. 12A-H illustrate a general method and system for
web-site testing. FIGS. 12A-H all use the same illustration
conventions, in which large rectangles represent the four enti-
ties shown in FIG. 11.

A client establishes a relationship with the testing service,
as shown in FIG. 12A, by accessing the testing service
through a browser executing on the client computer. As
shown in FIG. 12A, an employee or owner of the client web
server uses the client computer 1202 to access a testing-
service web site, via a browser 1204 running on the client
computer, which allows the client web server to register as a
client of the testing service. The testing service 1206 includes
one or more databases 1208 and 1210 that store information
used to construct library and key files that are downloaded to
client web servers, store statistics collected during testing,
and store various different data objects and records that
describe clients, tests, test runs, experiments, and other data
used to conduct web-site testing. The client web server 1212
serves a number of different web pages described by HTML
files 1214 to users, represented by user 1216, who access the
web pages served by the client-web server through a browser
1218 running on the customer computer 1216. The testing
service and client web server additionally include web-server
engines, application programs, and other components of serv-
ers and computer systems (1215 and 121 in FIG. 12A).

As shown in FIG. 12B, the client carries out a dialog 1220
with the testing service in order to provide the testing service
with information about the client that allows the testing ser-
vice to prepare a client record or records 1222 that describe
the client and to store the client record or records in the
database. In addition, the testing service may undertake vari-
ous authorization and authentication steps to ensure that the
client web server is a valid web server and that the client can
transmit remuneration for testing services to the testing ser-
vice. As part of client initialization, the testing service pre-
pares a script library 1224 and a key file 1226 that the testing
service downloads to the client web server. The script library
1224 includes routines that are called by client-web-server
users during web-site testing. This library is referred to as a
“script library” because script routines are often provided to
browsers for execution. However, other types of routines may
be provided by other types of libraries in alternative imple-
mentations. The key file 1226 includes cryptographic infor-
mation that ensures that all information exchanges that occur
between client users and the testing service are secure.

As shown in FIG. 12C, following client initialization, the
client modifies any of the HTML encodings of web pages that
may be altered during testing of the client-web server by the
testing service. The alternations are minimal. To each HTML
file that encodes a web page that may be tested, the client
generally adds only two single-line statements and, in the
case that display objects are not associated with identifiers, as
discussed above with reference to FIG. 3, the client web



US 9,274,932 B2

11

server provide identifiers for each of the objects that may be
specified as factors for testing of web pages. The single-line
statements are generally identical for all client web pages,
greatly simplifying the web-page modification carried out by
the client. The first statement results in downloading of a
script library from the client web server, and the second script
launches one or more information exchanges between the
testing server and user computer. In the case that a conversion
event is tied to a specific user-activated display device, such as
a button, a call to a conversion script is inserted into the
HTML file, so that user activation of the user-activated dis-
play device generates an information-exchange transaction
with the testing service corresponding to a conversion event.
As discussed above, these may be the HTML identifiers dis-
cussed with reference to FIG. 3, or other types of identifiers.
In many cases, simple changes to the HTML files can be
automatically carried out by a script or by routines provided
by a content-management-service application-programming
interface.

Following client initialization and modification of the
HTMIL -file encodings of web pages that may be subsequently
tested, the client can configure and run tests through a test-
configuration interface provided as a website by the testing
service to clients, as shown in FIG. 12D. The test configura-
tion interface 1230 allows the client computer to define tests
1232, specity and modify already-specified test runs 1234,
and specify segments 1236, and, using client-supplied test
and test-run specifications, the testing service generates the
experiments 1238 associated with each test run. All of the test,
test-run, and segment information is stored in records asso-
ciated with a reference to the client in one or more databases
within the testing service. The test-configuration interface
1230 additionally provides run-time information to the client
web server and allows the client web server to launch trial
runs and test runs.

When a client web server has created a test and launched a
test run for the test, the testing service provides modifications
of'the tested web page to users of the client-web-server during
the test in order that the users receive altered web pages that
constitute test experiments, and the testing service collects
statistics based on users’ access to web pages under test. This
process is next described, with reference to FIGS. 12E-G.

When a client-web-server user 1216 accesses a test web
page, the client-web-server user sends an HTML-file request
through the Internet to the client web server 1212, as shown in
FIG. 12E, which returns the requested HTML page to the
client-web-server user 1216 for rendering and display by the
browser 1218 executing within the user’s computer. As the
browser begins to process, the HTML file, the browser
encounters a statement 1240 that causes the browser 1218 to
request the script library from the client web server. When the
script library is downloaded by the client web server, the
HTML file is modified, on the user computer, to launch an
additional information exchange with the testing service to
download additional library routines from the testing service.
This additional information exchange is carried out only
when the web page being processed is an active test page, the
user computer is a valid test subject for an active test, and the
additional library routines are not already cached in the user
computer’s browser. Insertion of the library-routine-fetch
statement is one of the two modifications to the HTML files
corresponding to tested web pages made by the client.

Next, as the browser continues to process the HTML, as
shown in FIG. 12F, the browser encounters a call to the library
routine “WM.setup” 1241. When executed by the browser,
WM .setup initiates one or more information exchanges with
the testing service during which the testing service can access

10

15

20

25

30

35

40

45

50

55

60

65

12

cookies and other information associated with the web page
on the user’s computer, and the user computer receives web-
page modifications from the testing service. Cookies can be
used, for example, to ensure that a test subject who repeatedly
accesses a landing page receives the same experiment, or test
page, each time. Only when the web page being processed by
the user computer is an active test page, and the user computer
is an active test subject, are web-page modifications returned
to the user computer by the testing service, and information
uploaded by the testing service from the user computer. When
this web page and user are validated, the testing service
records the page accessed by the user, an identifier of the user,
and a time of access in one or more database entries 1242 and
returns a snippet, representing one or more nodes or sub-trees
of the DOM corresponding to the web page, to the user
computer, which modifies the DOM constructed by the
browser to incorporate the snippet downloaded by the testing
service to the user. In other words, the testing service down-
loads modifications that transform the web page downloaded
by the user to a particular altered web page representing an
experiment. Thus, following the information transaction
illustrated in FIG. 12F, the user’s browser alters the DOM and
displays, to the user, the altered web page correspondingto an
experiment as part of the test run. The snippet is constructed
or retried by the testing service based on the orthogonal-array
test basis or other test design. The stored test design defines
the experiments, from which the testing service seclects
experiments for provision to users in order to obtain a well-
distributed sampling of experiments during the test. Subse-
quently, as shown in FIG. 12G, should the user download a
page, or invoke a feature on a page, corresponding to a con-
version event, the user’s browser, in processing the HTML
file, encounters a library call 1250 that results in an informa-
tion transaction between the user and testing service. The
testing service checks to ensure that the web page is a valid
conversion page for an active test, that the user is a valid test
subject. When all of these tests are valid, the conversion event
is recorded 1352 for the experiment by the testing service.

Finally, as shown in FIG. 12H, when the testing service has
collected sufficient data to consider the test run to be com-
plete, the testing service changes the status of the test run to
complete, and may then undertake analysis and reporting of
the test results. The test results may be automatically returned
to the client web server, or may be subsequently returned, on
demand, when the client checks the status of the test run and
determines that the test run has been completed.

FIGS. 13A-H provide control-flow diagrams for a web-site
testing service. FIG. 13 A provides a high-level event loop
carried out by the testing service on behalf of one or more
clients. In step 1302, the testing services waits for a next
client-generated event. When the event corresponds to access
of'the testing-service website for registration by a new client,
as determined in step 1304, the routine “initialize new client”
is called in step 1306. When the event is a request to construct
a new test by an already-registered client through the test-
configuration interface, as determined in step 1308, the rou-
tine “test setup” is called in step 1310. When the event is a
request to configure a new test run, as determined in step
1312, the routine “test run setup” is called in step 1314. When
the event is a request to launch a trial run, as determined in
step 1316, the routine “trial run” is called in step 1318. When
the event is a request to launch a test run, as determined in step
1320, the routine “test run” is called in step 1322. When the
event is a status, information request, or information-update
request, as determined in step 1324, then the routine “status”
is called in step 1326. For example, a client can obtain test-
result information during a test run, and can additional obtain



US 9,274,932 B2

13

analysis results following completion of a test run. Any of
various additional types of events are handled in a default
event handler in step 1328. Additional events include log-ons
to the testing service web site by registered clients, during
which clients are authorized and authenticated.

FIG. 13B provides a control-flow diagram for the routine
“initialize new client” called in step 1306 of FIG. 13A. In step
1330, the testing service carries out a dialog, through the
testing service web site interface, with a prospective client in
order to collect information about the client. This information
may include the client’s name, address, billing address, web
site URL, and other such information. If all needed informa-
tion has been collected through this dialog, as determined in
step 1332, then the testing service proceeds to authenticate
and authorize the prospective client, in step 1334. Otherwise,
as with most of the steps carried out by the testing service
during dialogs with clients of the testing service, the testing
service may elect to retry a previous step, as determined in the
current case in step 1336, in order to make an attempt to
acquire the remaining needed information or, in certain cases,
may simply return an error message and fail. Once a client has
been authorized, the testing service, in step 1337, either
through a dialog or via automated methods, determines the
web site domains and cookie domains of the client web
server, and obtains, from the client, specification of a file-
system location at which to download to the client web server
the library and key files. In addition, the testing service deter-
mines whether or not to use a secure protocol when commu-
nicating with client-web-server users and any other informa-
tion needed for executing tests. Then, in step 1338, the testing
service creates and downloads the script library and key files
to the client web server. In step 1340, the testing service
prepares and stores one or more client records that describe
the client and provide a basis for further interactions with the
client and, finally, in step 1342, return an acknowledgement
to the client. In an actual testing service system, client initial-
ization may contain many additional steps, and may involve
solicitation and acquisition of many additional different types
of information.

FIG. 13C provides a control-flow diagram for the routine
“test set up” called in step 1310 of FIG. 13 A. In step 1346, the
testing service solicits test information from the client and
receives the solicited information in step 1348. Steps may be
iterated in order to carry out a dialog during which the needed
information to prepare and store a record describing a test is
acquired by the testing service. Once the information is
received, the testing service prepares a test record and enters
the test record in the testing service’s database in step 1350 in
association with, or referenced by, one or more client records.
As discussed above, test information may include a test name,
creation date, description, list of factors, and other informa-
tion that provide a basis for subsequent construction of test
runs.

FIG. 13D provides a control-flow diagram for the routine
“test run setup” called in step 1314 of FIG. 13A. In step 1354,
the testing service receives information about a next test run
and opens a test record for the test run. Step 1354 may involve
multiple information exchanges with the client. It should also
be noted that the client may elect to update or modify an
already existing test run, in which case an already existing
test-run record is accessed in step 1354. Next, in step 1356,
the testing service carries out an information exchange with
the client to obtain all the information that defines a test run,
including various attributes, the levels for each factor, a speci-
fication of a test segment, and other such information. Once
that information is received, then, in step 1358, the testing
service provides various orthogonal-array-based or other

25

40

45

14

test-design-based testing alternatives to the client, from
which the client web server selects a particular test design.
Various different orthogonal-array-based test designs or other
types of test designs may be associated with different advan-
tages and disadvantages, and selection of an orthogonal-ar-
ray-based test or other test design may involve consideration
of'a number of different trade-offs, including potential length
of the test run, computational requirements on the testing
service, and many other such factors. Finally, in step 1360, the
testing service prepares and stores a test-run record and, in
addition, sets the test-run status to “constructed.” Note that, in
certain implementations, an initial under-construction status
may be associated with a test run as it is being defined and
constructed by the routine “test run setup.”

FIG. 13E provides a control-flow diagram for the routine
“test run,” called in step 1322 of FIG. 13A. In step 1366, the
testing service sets the status of the test run to “active.”” Then,
in a continuous loop comprising steps 1368-1370, the testing
service continues to handle test-run events, primarily infor-
mation exchanges with test subjects’ computers invoked by
execution of script-library routines by users’ browsers, until
the test is complete, as determined in step 1370. In general, a
test run continues until sufficient data has been collected to
provide statistically meaningful results. However, various
implementations provide additional means for test runs to be
halted through the test-configuration interface by clients, and
may provide for halting of test runs by the testing service
when certain desirable events or test-run-execution charac-
teristics are detected during the test run by the testing service.
Once a test run is completed, the testing service sets the status
of the test run to “complete,” in step 1372, and then may
undertake analysis of the test results and reporting of results
of'the analysis, in steps 1374 and 1376. As briefly discussed,
above, results may also be reported to a client during the test
run, through the web-site interface.

FIG. 13F is a control-flow diagram of the routine “handle
run events” called in step 1369 of FIG. 13E. This routine is a
simple event handler, in which messages sent from user com-
puters as a result of calls to the script-library routine
“WM.setup” by user browsers are handled by a call to the
routine “wmsetup,” in step 1380, and messages sent from user
computers as a result of calls to the script-library routine
“WM.convert” by user browsers are handled by a call to the
routine “wm convert,” in step 1382. Note that the script-
library routines “WM.setup” and “WM.convert” are called by
a browser running on the user computer, and those script
routines, in turn, call routines that initiate an information
transmission with the testing service.

FIG. 13G provides a control-flow diagram of the routine
“wmsetup” called in step 1380 of FIG. 13F. In step 1384, the
testing service routine receives a message, for request, from a
user computer as a result of execution, by auser’s browser, of
the script-library routine “WM.setup.” In step 1385, the test-
ing service uses a URL for the web page being processed to
access the database or databases maintained by the testing
service in order to determine whether or not the call to
WDM.setup represents a page-access event or a conversion
event, the type of test being run, whether or not the web page
is an active test page and the user computer is a valid and
active test subject, and other such information. When the test
page that included a call to “WM.setup,” which, in turn,
generated the message or request received in step 1384, is an
active test page, as determined in step 1386 by the testing
service, and when the user computer is an authorized test
subject, as determined in step 1387, then, in step 1388, the
testing service then in the case that the call to WM.setup
represents a landing-page-access event, prepares the DOM



US 9,274,932 B2

15

modifications needed to generate an experiment for display
on the user computer and transmits those modifications to the
user computer. Finally, in step 1389, the testing services
records either a landing-page-access event by the user com-
puter or a conversion event, depending on the web page. Note
that, in the case that the page from which the call to
“WM.setup” was made is not an active test page, orin the case
that the user computer is not an active and authorized test
subject, the routine “wmsetup” simply returns. In other
words, there is almost no performance penalty and no pertur-
bation to the client’s web server in the case that a user
accesses an inactive test page or in the case that non-test-
subject users access test pages. Steps 1384 and 1385 may
include one or more information exchanges between the user
computer and testing service.

FIG. 13H is a control-flow diagram for the routine
“wmconvert” called in step 1382 of FIG. 13F. This routine is
similar to the routine “wmsetup,” described with reference to
FIG. 13G. The primary difference is that this routine is only
called for a conversion event, which is recorded, in step 1390,
as conversion event in a testing-service database.

The routine “trial run,” called in step 1318 of FIG. 13A, is
similar to the routine test-run, discussed above, with the
exception that a trial-run status may be set for the test run
during a trial run. The routine “trial run” is not further dis-
cussed. The routine “status,” called in step 1326, returns
status information with respect to test runs and other infor-
mation about tests, test runs, and clients. Implementation of
this routine is strongly dependent on the particular database
organizations used by the testing service and on the particular
web-site interface provided to clients, and is not further dis-
cussed.

FIG. 14 shows the HTML modifications used to virtually
incorporate a testing service into a web site. The HTML code,
previously shown in FIG. 3, includes first statement 1402 that
directs a browser to download the script-routine library and a
second statement 1404 that calls a script-library entry point
“WM.setup” that results in sending a message or request to
the testing service to indicate a landing-page-access event or
page-access-conversion event. A page that includes a dis-
played object, activation of which is defined to be a conver-
sion even, is similarly modified to include a call to the library
routine “WM.convert.” By merely adding two statements to
an HTML file, or three in the case that the page corresponds
bothto a landing-page-access event and to a conversion event,
the HTML file becomes a potential test web page, and the
testing service is virtually incorporated into the client web
server. Again, the statements used to modify landing-access-
event-associated web pages are identical for all such web
pages, as is the statement that is used to modify display-
objects associated with conversion events. A client can easily
write a script or other program, or use a content-management-
system programming interface to introduce these identical
statements into web pages. FIG. 15 provides an exemplary
script library downloaded service.

Graphical-User-Interface-Based Design and
Configuration of Web-Site Testing and Web-Site
Analysis

A graphical user interface is provided, according to the
current disclosure, to users of the above-described web-site-
testing system. A graphical user interface allows users to
quickly identify portions of a displayed web page that the
users wish to designate as factors, and to then provide various
alternatives to, and modifications of, these factors for use in
the above-described testing process. Each factor needs to be

15

40

45

55

60

16

identified so that automated web-site-testing system can
properly instrument the web page and replace the original
factor with modified factors. In many cases, portions of a
displayed web page identified as a factor by a user of the
graphical user interface have identifiers defined within the
HTML file. These identifiers are specified in identifier-defi-
nition statements such as “id=name” within HTML tags.
However, web-site developers are not required to assign iden-
tifiers to the displayed elements of a web page. As a result, the
graphical user interface employs a method to unambiguously
identify factors specified by users so that the corresponding
HTML code can be instrumented and modified during testing.

FIGS. 16 A-I illustrate generation of element paths, which
fully describe the location of elements of a web page within a
DOM-tree representation of the web page, and unique iden-
tifiers for web-page elements, which provide relative paths
from an element associated with an identifier to the element
within the DOM-tree representation of the web page. The
element paths and the unique identifiers (“unique IDs”) for
elements are both generated to provide unambiguous indica-
tions of particular elements within web pages and the DOM-
tree representations of the web pages, despite many elements
within the web pages and DOM-tree representations not
being associated with identifiers. Element paths and unique
IDs for elements are designed to include sufficient informa-
tion to identify elements despite changes to web pages and/or
DOM-tree representations of the web pages following gen-
eration of the element paths and unique IDs. The element
paths and unique IDs, discussed below, provide the techno-
logical foundation for graphical-user-interface-based design
of web-page testing and/or web-page analysis, discussed
above. The graphical-user-interface-based design of tests and
analytical procedures allows users without programming
experience and without knowledge of the various languages
in which web pages are encoded to nonetheless quickly and
accurately select factors and levels from within web pages for
subsequent testing and analysis.

FIG. 16A shows a displayed web page and a DOM-tree
representation of the web page. The illustration conventions
used in FIG. 16A are also used in FIGS. 16B-1, discussed
below. Both the web page and the DOM-representation of the
web page are abstractly illustrated, to simplify the following
discussion. The web page 1602 includes numerous features
nested up to five levels deep. The DOM-tree representation
1604 of the web page is, as discussed above, an acyclic graph
rooted at a root node 1606 that corresponds to the entire web
page 1602. In the simplified, abstract DOM tree 1604, nodes
are shown as small squares, such as the square representing
node 1606, with interior, single-character labels representing
the type of node and exterior numeric labels indicating, for
certain nodes, an identifier associated with the node. For
example, the root node, node 1606, includes the interior label
“e” 1608 that indicates that the node is a displayed element
within the web page and the exterior numeric label “1” 1610
is a unique identifier associated with the node. As discussed
above, DOM trees include nested tags of many different
types. The single-character labels used in FIGS. 16 A-I cor-
respond to tag names in DOM trees and HTML files or other
types of web-page encoding. The tags may be additionally
associated with identifiers, as discussed above, which are
represented in the simplified, abstract DOM tree 1604 as
single-character numerals, such as the exterior numeric label
“1” 1610 representing the unique identifier associated with
the root node. Many nodes in the example DOM tree 1604,
such as node 1612, are not associated with identifiers.

FIGS. 16B-E show the correspondence between element
nodes in the example DOM tree (1604 in FIG. 16A) and



US 9,274,932 B2

17

displayed elements in the simplified, abstract web page (1602
in FIG. 16A). FIG. 16B shows correspondence between
nodes at the first two element-node levels of the DOM tree
and corresponding displayed elements of the web page. The
root node 1606 corresponds to the entire web page 1602, as
indicated by curved arrow 1614. Three second-element-level
element nodes 1612 and 1616-1617 correspond to the three
highest-level blocks, or divisions, within the displayed web
page 1618-1620, respectively. Note that the node 1621, below
node 1606 and above node 1616 in the DOM tree (1604 in
FIG. 16A), corresponds to a higher-level, enclosing tag
directly above node 1616 in the DOM tree hierarchy. Node
1621, with interior label “c,” may represent, as one example,
the dark background coloring for the high-level panel or
division 1620 represented by node 1616. Similarly, nodes
1622-1625 also represent tags enclosing lower-level ele-
ments, and may also represent coloring or other properties of
the elements that they enclose. FIGS. 16C-E show the corre-
spondence between the remaining element nodes and dis-
played features within the displayed web page (1602 in FIG.
16A).

It should be noted that the DOM-tree representation is
generally created as a step in rendering of an HTML file, or
other web-page-encoding document, by a web browser for
display on a display device. After the DOM-tree representa-
tion of the web page has been prepared, the DOM tree fully
specifies display of the web page. The DOM tree nodes that
represent displayed features within a displayed web page are
generally associated with display positions and the dimen-
sions of displayed elements. It is possible to manually or
programmatically edit a DOM-tree representation of a web
page in order to change the appearance of the displayed web
page. The DOM tree is generally encoded as an object class
that provides various useful navigational member functions
and additional member functions to allow the contents of
DOM-tree nodes to be modified.

FIGS. 16F-H illustrate principles of the graphical-user-
interface-based test and analysis design based on element
paths. As shown in FIG. 16F, during graphical-user-interface-
based design oftests and analyses, the user may move a cursor
1630 to point to a particular displayed element 1632 of a web
page. The graphical-user interface uses the coordinates of the
current position of the cursor 1630 to generate an element
path leading to the lowest-most element within the DOM-tree
representation of the web page corresponding to the current
cursor location. In FIG. 16F, only a relevant portion of the
DOM tree 1634 is shown for the position of cursor 1630
within web page 1602. The cursor position falls within ele-
ment 1632 represented by node 1636 in the relevant portion of
the DOM tree 1634. The full path leading to element 1636
includes node 1606, node 1622, and node 1637. This node
path through the DOM tree to element 1636 is encoded into a
symbol string 1638 displayed above the web page, in certain
examples of the graphical user interface. The symbol string
1638 is an element path, or a unique encoding of an identifier
for element 1636 relative to the root node. In essence, element
path 1638 is an absolute, unique ID for node 1636. The
element path includes a symbolic representation of each node
1606, 1622, 1637, and 1636 in the path from the root node to
the lowest-level node corresponding to the current cursor
position. The root node is represented by the symbols “e#1”
1639. Node 1622 is represented by the symbol string “c[2]”
1640, node 1637 is represented by the symbol string “e#2”
1641, and node 1636 is represented by the symbol string
“e[3]71642. The leftward-pointing angle brackets 1643-1645

10

15

20

25

30

35

40

45

50

55

60

65

18

serve as separators or symbolic-node-representation delimit-
ers, and also indicate the direction of the path from a root node
to a selected element.

Those nodes associated with identifiers, in the current case
node 1606 and node 1637, have symbolic representations
1639 and 1641 consisting of a tag name, or element type, in
this case “e,” followed by the hash symbol “#,” in turn fol-
lowed by the identifier associated with the node. Because a
DOM-tree object associated with member functions that can
be called to return a pointer to a node corresponding to a
supplied identifier, those nodes associated with identifiers
server as absolute node references within a path.

A different convention is used for nodes without identifi-
ers. A symbolic representation of a node without an identifier
begins with the type, or tag name, followed by an index, or
position, of the node within an ordered list of sibling nodes of
the parent of the node. Consider, for example, node 1622.
Node 1622 is in the second level of the DOM tree. The parent
ofnode 1622, root node 1606, has three children, nodes 1612,
1621, and 1622. In an ordered list of these children from left
to right, node 1612 has index “0,” node 1621 has index “1,”
and node 1622 has index or position “2.” Thus, the symbolic
representation for node 1622 is “c[2]” 1640. The symbolic
representations of nodes 1612 and 1621, 1647 and 1648,
respectively, are also shown in FIG. 16F. Thus, the element
path is a symbolic representation of a traversal path from the
root node of a DOM tree to a particular element of the DOM
tree, with node identifiers symbolically represented with
those identifiers and nodes not associated with identifiers
symbolically represented by their position, or index, within
an ordered list of sibling nodes.

The combination of the displayed symbolic element path,
cursor, and relevant portions of the web page provide a
straightforward and easily understood display-element selec-
tion method and navigation method. For example, as shown in
FIG. 16G, by indicating, as shown by arrow 1650, that itis the
next-highest-level displayed element that is desired, the
graphical user interface can adjust the display to remove the
display of element 1632 in FIG. 16F and instead prominently
display element 1620 corresponding to node 1617. Thus, any
element within a nested display hierarchy of elements can be
easily navigated to using the displayed symbolic element
path.

FIG. 16H, using the illustration conventions of FIG. 16F,
illustrates the user selection of a different displayed element
1652 in the web page, the corresponding symbolic element
path 1654, and the relevant portion of the DOM tree 1656.

A unique ID for every element can be generated from the
symbolic element path by truncating the element path from
the root node down to, but not including, a last identifier-
associated node prior to the element. FIG. 161 shows a com-
plete list of the element paths and unique IDs for each dis-
played element in the example web page 1602. The element
paths and unique IDs are provided in tables, such as table
1660, cach row of which represents a particular displayed
element. For example, row 1662 in table 1660 represents
displayed element 1664, as indicated by arrow 1666, and
indicates that the full path name for this element is “e[0]
<e#2<c[2]<e#1” 1668 and the unique ID for the element
“e[0]<e#2” 1670.

A unique ID is a relative path in that a unique ID is gener-
ally a truncated symbolic element path that begins with, or is
relative to, a closest identifier-associated node above the node
identified by the unique ID. Of course, in certain cases, the
unique ID and element path for a particular node are identical.
In general, however, the unique ID indicates a path to the
identified node, or element, relative to an identifier-associated



US 9,274,932 B2

19
intermediate node below the root node and above the identi-
fied node in the DOM-tree hierarchy.

By using cursor operations and generating element paths
and unique IDs for selected elements, the graphical user
interface can assign unique IDs to each displayed web-page
element selected as factors for a test or analysis. The unique
1D provides an unambiguous symbolic representation of the
position of the corresponding node in the DOM-tree repre-
sentation of the web page. Thus, factors can be selected
without having access to, or understanding, the underlying
HTML file or other encoding of the web page. This provides
aremarkable increase in the usability and efficiency of use of
web-testing and web-analytics platforms that feature graphi-
cal-user-interface-based test and analysis design.

FIGS. 17A-D provide control-flow diagrams for routines
that generate stored digital encodings of element paths and
unique IDs and that generate a symbolic string for either a
digitally encoded element path or unique ID. It should be
noted, at the onset, that these routines represent control-logic
components of a graphical-user-interface-based test-design
system, described above. These routines are computer
instructions that are stored in one or more electronic memo-
ries, mass-storage devices, compact disks or DVDs, or other
physical data-storage media. Those with even rudimentary
background in science and technology would immediately
appreciate that a computer-readable media capable of storing
computer instructions that implement these routines and the
web-testing-design system that includes them cannot possi-
bly be stored within signals, such as electromagnetic radia-
tion. The web-testing-design system is a physical machine
with a control component that includes computer instructions
encoded in a physical computer-readable medium.

FIG. 17A provides a control-flow diagram for the routine
“path” that prepares an encoded element path based on the
pointer to a node of a DOM-tree representation of a particular
web page. In step 1702, an array is received or declared, a
node pointer cNode is initialized to point to, or reference, the
lowest-level element in the DOM tree corresponding to a
particular position within a displayed web page, and the vari-
able a is set to 0. Next, in step 1704, the recursive routine
“rPath” is called, with parameters a, array, and cNode. The
routine “rPath” stores an element path for the node referenced
by cNode into array. In step 1706, the routine “path” returns
the array and the variable a.

FIG. 17B provides a control-flow diagram for the routine
“rPath” called in step 1704 in FIG. 17A. In step 1710, the
routine “rPath” receives a, array, and cNode. In step 1712, the
routine “rPath” determines whether or not the node refer-
enced by cNode is associated with an identifier. When the
node is associated with an identifier, then control flows to step
1714, where a next entry of the array is set to include the
symbolic encoding of an identifier-associated node, and vari-
able a is incremented. When the node referenced by cNode
has a parent, as determined in step 1716, then local variable p
is set to point to the parent of the cNode, using a DOM-object
navigation member function, in step 1718. When a node does
nothave a parent, as determined in step 1716, then the routine
“rPath” returns, in step 1720. When the node referenced by
cNode is not associated with an identifier, as determined in
step 1712, then control flows to step 1722, where the routine
“rPath” determines whether or not the node referenced by
cNode has a parent node in the DOM tree. When the node
referenced by cNode has a parent node, control flows to step
1724, where the local variable p is set to the parent of the
cNode, as in step 1718, and, in addition, the index of the node
referenced by cNode within the children of the node refer-
enced by p is determined, again using DOM-tree member

10

15

20

25

30

35

40

45

50

55

60

65

20

functions as well as any additional necessary navigational and
node-retrieval operations. In step 1726, the next element of
the array receives a symbolic representation of the node ref-
erenced by cNode, including the element type and index
determined in step 1724. If the node referenced by cNode is
not associated with an identifier and does not have a parent,
then, in step 1728, the symbolic encoding of a root node not
associated with an identifier is stored into the next element of
the array, and the routine “rPath” returns in step 1720. When
the node referenced by cNode has a parent, then a recursive
call is made to the routine “rPath” in order to process the
parent node and generate and store, in the array, a symbolic
encoding of the parent node. In step 1730, the variable cNode
is set to reference the same node referenced by the local
variable p, and the recursive call is made in step 1732.

FIG. 17C provides a control-flow diagram for the routine
“unique ID” that generates a unique ID, as discussed above,
from an element path stored in an array. In step 1740, the
routine “unique ID” receives the array storing the element
path and a variable a that stores the length, in nodes, of the
element path. Also in step 1740, the local variable iis set to 0.
When i is equal to a, as determined in step 1742, then the
routine “unique ID” returns the current contents of the array
and the variable a, in step 1744. Otherwise, when the element
array[i] contains a #-demarcated ID, as determined in step
1746, then, in step 1748, a is updated to equal i+1 and control
then flows to step 1744, where the array and local variable a
are returned. Otherwise, in step 1750, the local variable i is
decremented and control returns to step 1742. Thus, the rou-
tine “unique ID” indicates a path name received by the routine
from the right down to, but not including, the first identifier-
associated node above the lowest-level node in the element
path.

FIG. 17D provides a control-flow diagram for a routine
“printPath” that prints out the contents of an array containing
an element path or unique ID to produce a symbolic repre-
sentation of a path, such as symbolic representation 1638 in
FIG. 16F for the path comprising nodes 1606, 1622, 1637,
and 1636 shown in the relevant portion of the DOM tree 1634
in FIG. 16F. This routine is self-explanatory, and is therefore
not further described in the interest of brevity.

FIGS. 18A-B illustrate a routine that locates a node, in a
DOM tree, based on a unique ID that describes the node. In
step 1802, the routine “findNode” receives a variable a and an
array containing the length of a symbolic unique ID and the
unique 1D, respectively. Also in step 1802, local variable i is
set to a-1, and local variable cNode is set to point to the root
of the DOM tree. When the DOM-object member functions
used to return a pointer to the root of the DOM tree return a
null pointer, as determined in step 1804, then an error is
returned in step 1806. When the first element of the array
contains a #-demarcated 1D, as determined in step 1808, then
when the ID encoded in the array entry array[i] is equal to the
1D associated with the node referenced by cNode, as deter-
mined in step 1810, control flows to step 1822. When the ID
in the first array element is not the same as the 1D associated
with the node referenced by cNode, then, in step 1812, the
local variable p is set to the node in the DOM tree associated
with the ID in array[i]. When p is non-null, as determined in
step 1814, then cNode is set top in step 1816, and control
flows to step 1822. Otherwise, when p is null, an error is
returned in step 1818. Thus, when the first node does not
include a #-demarcated ID, as determined in step 1808, then
the first node must be the root node and not associated with an
ID. In that case, as determined in step 1820, the index con-
tained in the first element of the array must equal 0. When the
index does not equal 0, as determined in step 1820, then an



US 9,274,932 B2

21

error is returned in step 1824. Next, the routine “findNode”
determines whether the node referenced by cNode has a type,
or tag name, equal to the type or tag name included in the first
element of the array. If not, then an error is returned in step
1824. Otherwise, control flows to step 1826, in which the
routine “findNode” determines whether or not local variable
ais equal to 1. When a is equal to 1, then the routine “findN-
ode” returns cNode in step 1828, since the unique ID had only
a single node element. Otherwise, i is decremented in step
1830 and a second part of the routine “findNode” is called in
step 1832.

FIG. 18B provides a control-flow diagram for the second
part of the routine “findNode” called in step 1832 of FIG.
18A. In step 1840, the second part of the routine “findNode”
determines whether or not an index is defined in the symbolic
representation of the array element array[i]. If an index is not
defined, then an error is returned in step 1842. Otherwise, the
local variable nxt is set to the child of the node referenced by
cNode with index equal to the index encoded in the symbolic
representation of anode stored in array/[i], in step 1844. When
nxtis defined, or non-null, as determined in step 1846, control
flows to step 1848. Otherwise, nxt is set to the child of the
node referenced by cNode having the largest index, in step
1850. When nxt is now defined, as determined in step 1852,
control flows to step 1848. Otherwise, an error is returned in
step 1842. In step 1848, the second part of the routine “find-
Node” determines whether or not the type encoded in the
symbolic representation of the node stored in array([i] is equal
to the type associated with the node referenced by nxt. When
these types match, as determined in step 1848, then control
flows to step 1854. Otherwise, in step 1856, nxt is set to the
sibling of the node currently referenced by nxt within a
threshold index difference from the index encoded in the
array entry array[i] and having a type equal to the type
encoded in the entry array[i]. If nxt is now defined, as deter-
mined in step 1858, then control flows to step 1854. Other-
wise, an error is returned in step 1842. In step 1854, the
second part of the routine “findNode” determines whether or
not local variable i is now 0. When local variable 1 is 0, then
local variable nxt is returned in step 1860. Otherwise, i is
decremented and the variable cNode is set to reference the
same node as referenced by local variable nxt in step 1862 and
control flows back to step 1840.

For all of the above-illustrated routines of FIGS. 17A-18B,
many alternative implementations are possible using differ-
ent control structures, variables, logic paths, and by varying
other design and implementation parameters. The above-il-
lustrated implementations are provided as one example of the
routines which constitute a control component of a web-
testing-design, graphical-user-interface-based system.

FIGS. 19A-G illustrate example operations and specific
uses of the graphical user interface for web-testing design. In
FIG. 19A, a screen shot of the graphical user interface is
provided, in which a displayed element 1902 is highlighted
and the symbolic element path for which is shown 1904 in a
path bar above a displayed web page. In this example, the
contents of the element are also displayed in a text-entry
window 1906. As shown in FIG. 19B, by changing the text in
the text-entry window 1906, the text displayed for the element
represented by element path 1904 also changes. The change
in the display of the web page does not affect the underlying
HTML file or other encoding of the web page, but instead
involves changing contents of one or more DOM-tree-repre-
sentation nodes. As shown in FIG. 19C, in designing a test,
different levels for selected factors can be input into a text-
entry window 1908. FIG. 19D shows the web page exhibiting
the text for a level entered through the interface shown in FI1G.

10

15

20

25

30

35

40

45

50

55

60

65

22

19C. In FIG. 19E, the interface is being used to define a factor.
In this case, the factor is the large displayed element 1910 that
is symbolically represented by the element path 1912. The
name of the factor has been entered in text-entry window
1914, as shown in FIG. 19F. Using navigational input fea-
tures, a smaller feature 1916 can be selected instead of the
larger feature 1910, as shown in FIG. 19E, as a result of which
the symbolic element path for the selected feature 1918 is one
node longer than the symbolic element path 1912 in FIG. 19E.
FIG. 19G shows the same principles of element selection and
element encoding using element paths and unique IDs in a
user-interface component for designating a conversion ele-
ment. In this case, a display element 1920, with correspond-
ing symbolic element path 1922, has been selected as a can-
didate conversion element.

FIG. 20 illustrates a general computer architecture appli-
cable to many different types of computer systems on which
graphical-user-interface-based test-and-analysis design and
configuration systems can be implemented. The computer
system contains one or multiple central processing units
(“CPUSs”) 2002-2005, one or more electronic memories 2008
interconnected with the CPUs by a CPU/memory-subsystem
bus 2010 or multiple busses, a first bridge 2012 that intercon-
nects the CPU/memory-subsystem bus 2010 with additional
busses 2014 and 2016, or other types of high-speed intercon-
nection media, including multiple, high-speed serial inter-
connects. These busses or serial interconnections, in turn,
connect the CPUs and memory with specialized processors,
such as a graphics processor 2018, and with one or more
additional bridges 2020, which are interconnected with high-
speed serial links or with multiple controllers 2022-2027,
such as controller 2027, that provide access to various differ-
ent types of mass-storage devices 2028, electronic displays,
input devices, and other such components, subcomponents,
and computational resources.

Although the present invention has been described in terms
of particular embodiments, it is not intended that the inven-
tion be limited to these embodiments. Modifications within
the spirit of the invention will be apparent to those skilled in
the art. For example, as discussed above, these implementa-
tions of the control component for the graphical-user-inter-
face-based web-testing-design system discussed above can
be obtained by varying any of many different design and
implementation parameters, including choice of operating
system, hardware platform, control structures, data struc-
tures, modular organization, variables, and other such imple-
mentation and design parameters. While a particular coding
using indexes within brackets and #-demarcated IDs has been
shown, in the above-discussed examples, any of many differ-
ent possible symbolic representations of nodes within ele-
ment paths and unique IDs can alternatively be used. For
example, rather than angle brackets, leftward-pointing arrows
or other types of graphical symbols can be used for node
delimiters. Indexes can be delimited or noted by the various
types of symbols other than paired brackets. Symbols other
than the hash sign may be employed to introduced identifiers
and symbolic representations of nodes. Also, for even greater
redundancy and assurance that a node can be found, despite
changes to a DOM-tree representation of a displayed web
page, multiple unique IDs can be generated and stored, each
relative to a different identifier-associated node in the DOM
tree. In this case, one or more of the multiple unique IDs may
be relative to an identifier-associated node that is not closest,
in the hierarchy, to the identified node.

It is appreciated that the previous description of the dis-
closed embodiments is provided to enable any person skilled
in the art to make or use the present disclosure. Various



US 9,274,932 B2

23

modifications to these embodiments will be readily apparent
to those skilled in the art, and the generic principles defined
herein may be applied to other embodiments without depart-
ing from the spirit or scope of the disclosure. Thus, the present
disclosure is not intended to be limited to the embodiments
shown herein but s to be accorded the widest scope consistent
with the principles and novel features disclosed herein.

The invention claimed is:

1. A graphical-user-interface-based system for design and
configuration of web-site tests and analyses, the user-inter-
face-based system comprising:

one or more computer systems; and

computer instructions encoded in a memory, mass-storage

device, or other physical data-storage device or subcom-
ponent that, when executed by one or more processors
within the computer system, control the computer sys-
tem to
display a web page using a DOM-tree representation of
the web page, and
provide a graphical user interface that selects, according
to a user selection input to the displayed web page, an
element of the displayed web page and stores, in a
memory, mass-storage device, or other physical data-
storage device or subcomponent, a unique identifier
for the selected element that is a symbolic element
path, which includes symbolic representations of
each node in a traversal path within the DOM-tree
representation of the web page from a root node to the
element identified by the unique identifier, the sym-
bolic representations of each node in the traversal path
within the DOM-tree representation of the web page
is selected from
a symbolic representation of an identifier-associated
node that includes a symbolic representation of a
tagname associated with the identifier-associated
node and a symbolic representation of the identifier
with which the node is associated; and
a symbolic representation of a node not associated
with an identifier.
2. The graphical-user-interface-based system of claim 1
wherein the symbolic representation of the tagname and the
symbolic representation of the identifier with which the node
is associated are separated by one or more symbols that
indicate that the symbolic representation is a symbolic
representation of an identifier-associated node; and

separate the symbolic representation of the tagname from
the symbolic representation of the identifier with which
the node is associated.

3. The graphical-user-interface-based system of claim 1

wherein a symbolic representation of an identifier-associ-

ated node alternatively includes a symbolic representa-
tion of a node type associated with the identifier-associ-
ated node and a symbolic representation of the identifier
with which the node is associated; and

wherein the symbolic representation of the node type and

the symbolic representation of the identifier with which

the node is associated are separated by one or more

symbols that

indicate that the symbolic representation is a symbolic
representation of an identifier-associated node; and

separate the symbolic representation of the node type
from the symbolic representation of the identifier with
which the node is associated.

4. The graphical-user-interface-based system of claim 1
wherein a symbolic representation of a node not associated
with an identifier includes a symbolic representation of a
tagname associated with the node not associated with an

20

40

45

24

identifier and a symbolic representation of an index of the
node not associated with an identifier within an ordered list of
sibling nodes that includes the node not associated with an
identifier.

5. The graphical-user-interface-based system of claim 4
wherein the symbolic representation of the tagname and the
symbolic representation of the index are separated by one or
more symbols that

indicate that the symbolic representation is a symbolic

representation of a node not associated with an identi-

fier; and

separate the symbolic representation of the tagname from

the symbolic representation of the index.

6. The graphical-user-interface-based system of claim 4
wherein the symbolic representation of the node type and the
symbolic representation of the index are separated by one or
more symbols that

indicate that the symbolic representation is a symbolic

representation of a node not associated with an identi-

fier; and

separate the symbolic representation of the node type from

the symbolic representation of the index.

7. The graphical-user-interface-based system of claim 1
wherein a symbolic representation of a node not associated
with an identifier includes a symbolic representation of a
node type associated with the node not associated with an
identifier and a symbolic representation of an index of the
node not associated with an identifier within an ordered list of
sibling nodes that includes the node not associated with an
identifier.

8. The graphical-user-interface-based system of claim 1

wherein the symbolic representations of nodes in the tra-

versal path within the DOM-tree representation of the
web page are separated by one or more delimiter sym-
bols;

wherein the unique identifier for the selected element is a

symbolic element path, which includes symbolic repre-

sentations of each node in a traversal path within the

DOM-tree representation of the web page from an iden-

tifier-associated node to the element identified by the

unique identifier; and

wherein the symbolic representation of each node in the

traversal path within the DOM-tree representation of the

web page is selected from:
a symbolic representation of an identifier-associated
node includes a symbolic representation of a tagname
associated with the identifier-associated node and a
symbolic representation of the identifier with which
the node is associated; and
a symbolic representation of a node not associated with
an identifier.
9. The graphical-user-interface-based system of claim 8
wherein the symbolic representation of the tagname and the
symbolic representation of the identifier with which the node
is associated are separated by one or more symbols that
indicate that the symbolic representation is a symbolic
representation of an identifier-associated node; and

separate the symbolic representation of the tagname from
the symbolic representation of the identifier with which
the node is associated.

10. The graphical-user-interface-based system of claim 8
wherein the symbolic representation of the node type and the
symbolic representation of the identifier with which the node
is associated are separated by one or more symbols that

indicate that the symbolic representation is a symbolic

representation of an identifier-associated node; and



US 9,274,932 B2

25

separate the symbolic representation of the node type from
the symbolic representation of the identifier with which
the node is associated.

11. The graphical-user-interface-based system of claim 8
wherein a symbolic representation of a node not associated
with an identifier includes a symbolic representation of a
tagname associated with the node not associated with an
identifier and a symbolic representation of an index of the
node not associated with an identifier within an ordered list of
sibling nodes that includes the node not associated with an
identifier.

12. The graphical-user-interface-based system of claim 11
wherein the symbolic representation of the tagname and the
symbolic representation of the index are separated by one or
more symbols that

indicate that the symbolic representation is a symbolic

representation of a node not associated with an identi-
fier; and

separate the symbolic representation of the tagname from

the symbolic representation of the index.

10

26

13. The graphical-user-interface-based system of claim 8
wherein a symbolic representation of a node not associated
with an identifier includes a symbolic representation of a
node type associated with the node not associated with an
identifier and a symbolic representation of an index of the
node not associated with an identifier within an ordered list of
sibling nodes that includes the node not associated with an
identifier.

14. The graphical-user-interface-based system of claim 13
wherein the symbolic representation of the node type and the
symbolic representation of the index are separated by one or
more symbols that

indicate that the symbolic representation is a symbolic
representation of a node not associated with an identi-
fier; and

separate the symbolic representation of the node type from
the symbolic representation of the index.

#* #* #* #* #*



